Stabilization of a chain of three integrators by a feedback in the form of nested saturators
- 作者: Morozov Y.V.1, Pesterev A.V.1
 - 
							隶属关系: 
							
- V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
 
 - 期: 编号 4 (2024)
 - 页面: 167-176
 - 栏目: НАВИГАЦИОННЫЕ СИСТЕМЫ
 - URL: https://edgccjournal.org/0002-3388/article/view/676408
 - DOI: https://doi.org/10.31857/S0002338824040121
 - EDN: https://elibrary.ru/TRFTDB
 - ID: 676408
 
如何引用文章
详细
The problem of stabilizing a chain of three integrators subject to a phase constraint by a continuous constrained control is considered. The application of a feedback in the form of nested saturators results in study of a switching system. Necessary conditions of local stability are established. A Lyapunov function is constructed by means of which it is proved that the necessary conditions are sufficient for global stability of the closed-loop system. The discussion is illustrated by numerical examples.
全文:
作者简介
Yu. Morozov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: tot1983@inbox.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow						
A. Pesterev
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
														Email: alexanderpesterev.ap@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow						
参考
- Kurzhanski A.B., Varaiya P. Solution Examples on Ellipsoidal Methods: Computation inHigh Dimensions. Cham, Switzerland: Springer, 2014.
 - Teel A.R. Global Stabilization and Restricted Tracking for Multiple Integrators with Bounded Controls // Sys. & Cont. Lett. 1992. V. 18. № 3. P. 165–171.
 - Teel A.R. A Nonlinear Small Gain Theorem for the Analysis of Control Systems with Saturation // Trans. Autom. Contr. IEEE. 1996. V. 41. № 9. P. 1256–1270.
 - Li Y., Lin Z. Stability and Performance of Control Systems with Actuator Saturation. Basel: Birkhauser, 2018.
 - Olfati-Saber R. Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles, Ph.D. Dissertation, Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science, 2001.
 - Hua M.D., Samson C. Time Sub-optimal Nonlinear Pi and Pid Controllers applied to Longitudinal Headway Car Control // Intern. J. Control. 2011. V. 84. P. 1717–1728.
 - Pesterev A.V., Morozov Yu.V., Matrosov I.V. On Optimal Selection of Coefficients of a Controller in the Point Stabilization Problem for a Robot-wheel // Communicat. Comput. Inform. Sci. (CCIS). 2020. V. 1340. P. 236–249.
 - Pesterev A.V., Morozov Yu.V. Optimizing Coefficients of a Controller in the Point Stabilization Problem for a Robot-wheel // Lect. Notes Comput. Sci. 2021. V. 13078. P. 191–202.
 - Pesterev A.V., Morozov Yu.V. The Best Ellipsoidal Estimates of Invariant Sets for a Third-Order Switched Affine System // Lect. Notes Comput. Sci. 2022. V. 13781. P. 66–78.
 - Pesterev A.V., Morozov Yu.V. Optimizing a Feedback in the Form of Nested Saturators to Stabilize the Chain of Three Integrators // Lect. NotesComput. Sci. 2023. V. 14395. P. 88–88.
 - Морозов Ю.В., Пестерев А.В. Глобальная устойчивость гибридной аффинной системы 4-го порядка // Изв. РАН. ТиСУ. 2023. № 5. С. 3–15.
 - Пестерев А.В., Morozov Yu.V. Глобальная стабилизация интегратора второго порядка обратной связью в виде вложенных сатураторов // АиТ. 2024. № 4. C. 55–60.
 - Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М.: Наука, 2002.
 - Барбашин Е.А. Введение в теорию устойчивости. Сер.: Физико-математическая библиотека инженера. М.: Наука, 1967.
 - Кузнецов Н.В. Теория скрытых колебаний и устойчивость систем управления // Изв. РАН. ТиСУ. 2020. № 5. C. 5–27.
 - Лурье А.И., Постников В.Н. К теории устойчивости регулируемых систем // ПММ. 1944. № 3. C. 246–248.
 - Рапопорт Л.Б. Оценка области притяжения в задаче управления колесным роботом // АиТ. 2006. № 9. С. 69–89.
 - Generalov A., Rapoport L., Shavin M. Attraction Domains in the Control Problem of a Wheeled Robot Following a Curvilinear Path over an Uneven Surface // Lect. NotesComput. Sci. 2021. V. 13078. P. 176–190.
 
补充文件
				
			
						
						
						
						
					











