Structural defects of superconducting core of the single fiber MgB2/Nb,Cu composite

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The microstructure of the MgB2 core of the single fiber composite consisting of MgB2, the Nb barrier, and the Cu shell (MgB2/Nb,Cu), which is synthesized by the powder-in-tube method with an ex situ option and by subsequent annealing, has been studied. It is shown that a dislocation microstructure that exhibits high thermal stability is formed in the MgB2 core during cold deformation, in addition to powder compaction. A high dislocation density is observed inside MgB2 grains. Dislocations form walls with small misorientation angles between subgrains. Annealing at a temperature of 900°C for 1 h leads to a higher density of MgB2 ceramics, and the intergranular contact area increases. Moreover, MgO inclusions with a size of 10 nm or less are formed. Thus, various kinds of structural defects are formed, which can be considered as probable pinning centers for the magnetic flux.

全文:

受限制的访问

作者简介

E. Kuznetsova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: monocrist@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

T. Krinitsina

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

Yu. Blinova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

M. Degtyarev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: monocrist@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

P. Konovalov

AO VNIINM

Email: monocrist@imp.uran.ru
俄罗斯联邦, Moscow, 123098

K. Dikhtiyevskaya

AO VNIINM

Email: monocrist@imp.uran.ru
俄罗斯联邦, Moscow, 123098

I. Abdyukhanov

AO VNIINM

Email: monocrist@imp.uran.ru
俄罗斯联邦, Moscow, 123098

A. Tsapleva

AO VNIINM

Email: monocrist@imp.uran.ru
俄罗斯联邦, Moscow, 123098

参考

  1. Криницина Т.П., Кузнецова Е.И., Дегтярев М.В., Блинова Ю.В. Сверхпроводники на основе MgB2: структура и свойства // ФММ. 2021. Т. 122. С. 1271–1295.
  2. Yamamoto K., Osamura K., Balamurugan S., Nakamura T., Hoshino T., Muta I. Mechanical and superconducting properties of PIT-processed MgB2 wire after heat treatment // Supercond. Sci. Technol. 2003. V. 16. P. 1052–1058.
  3. Collings E.W., Sumption M.D., Bhatia M., Susner M.A., Bohnenstiehl S.D. Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands // Supercond. Sci. Technol. 2008. V. 21. P. 103001.
  4. Lei Z.Y., Yao C., Guo W.W., Wang D.L., Ma Y.W. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing // Materials. 2023. V. 16. P. 1786.
  5. Gajda D., Morawski A., Zaleski A.J., Häßler W., Nenkov K., Rindfleisch M.A., Żuchowska E., Gajda G., Czujko T., Cetner T., Hossain M.S.A. The critical parameters in in-situ MgB2 wires and tapes with ex-situ MgB2 barrier after hot isostatic pressure, cold drawing, cold rolling and doping // J. Appl. Phys. 2015. V. 117. P. 173908.
  6. Liao X.Z., Serquis A., Zhu Y.T., Civale L., Hammon D.L., Peterson D.E., Mueller F.M., Nesterenko V.F., Gu Y. Defect structures in MgB2 wires introduced by hot isostatic pressing // Superconductor Sci. Techn. 2003. V. 16. № 7. P. 799–803.
  7. Gao Z.L., Santra S., Amirkhanlou S., Eardley E., Wort C., Grovenor C.R.M., Speller S.C. Microstructures and superconducting properties of MgB2 bulk samples processed by ultra-high pressure-assisted sintering // J. European Ceramic Soс. 2022. V. 42. № 16. P. 7481–7490.
  8. Park J.W., Ahn J.H. Superconducting properties of spark plasma sintered MgB2 // Rev. Adv. Mater. Sci. 2011. V. 28. P. 181–184.
  9. Bohnenstiehl S.D., Susner M.A., Dregia S.A., Sumption M.D., Donovan J., Collin E.W. Experimental determination of the peritectic transition temperature of MgB2 in the Mg–B phase diagram // Thermochim. Acta. 2014. V. 576. P. 27–35.
  10. МЭК (IEC) 61788-10 – Critical Temperature of Composite Superconductors by a Resistance Method.
  11. Кузнецова Е.И., Сударева С.В., Криницина Т.П., Блинова Ю.В., Романов Е.П., Акшенцев Ю.Н., Дегтярев М.В., Тихоновский М.А., Кисляк И.Ф. Механизм образования и особенности структуры массивных образцов соединения MgB2 // ФММ. 2014. Т. 115. № 2. С. 186–197.
  12. Кузнецова Е.И., Акшенцев Ю.Н., Есин В.О., Сударева С.В., Блинова Ю.В., Дегтярев М.В., Новожонов В.И., Романов Е.П. Механизмы образования массивной сверхпроводящей фазы MgB2 при высоких температурах // ФТТ. 2015. Т. 57. № 5. С. 859–865.
  13. Олейник Г.С. Структурные механизмы пластической деформации керамических материалов // Электронная микроскопия и прочность материалов. Сер.: Физическое материаловедение, структура и свойства материалов. 2014. № 20. С. 3–30.
  14. Mikheenko P. Dislocations as Origin of High Critical Current Density in Bulk MgB2 // 2019 IEEE 9th International Conference Nanomaterials: Applications & Properties (NAP), Odessa, Ukraine, 2019. P. 1–4.
  15. Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В. Вторичные фазы в сверхпроводящей керамике // ФММ. 2023. Т. 124. № 7. С. 644–652.
  16. Kovač P., Melišek T., Kopera L., Hušek I., Polak M., Kulich M. Progress in electrical and mechanical properties of rectangular MgB2 wires // Supercond. Sci. Technol. 2009. V. 22. P. 075026.
  17. Sobrero C.E., Malachevsky M.T., Serquis A. Core Microstructure and Strain State Analysis in MgB2 Wires with Different Metal Sheaths // Advanc. Cond. Matter Physics. 2015. V. 2015. Article ID 297363. http://dx.doi.org/10.1155/2015/297363.
  18. Salem N., Ding K., Rödel J., Fang X.F. Thermally enhanced dislocation density improves both hardness and fracture toughnessinsingle-crystal SrTiO3 // J. Am. Ceram. Soc. 2023. V. 106. P. 1344–1355.
  19. Porz L. 60 years of dislocations in ceramics: A conceptual framework for dislocation mechanics in ceramics // International Journal of Ceramic Engineering & Science. 2002. V. 4. № 4. P. 214–239.
  20. Криницина Т.П., Кузнецова Е.И., Блинова Ю.В., Раков Д.Н., Белотелова Ю.Н., Сударева С.В., Дегтярев М.В., Романов Е.П. Структура и стабильность сверхпроводящей сердцевины одножильного трубчатого композита MgB2/Nb,Cu с высоким критическим током // ФMM. 2014. Т. 115. № 6. С. 573—582 .
  21. Li S., White T., Laursen K., Tan T.T., Sun C.Q., Dong Z.L., Li Y., Zho S.H., Horvat J., Dou S.X. Intense vortex pinning enhanced by semicrystalline defect traps in self-aligned nanostructured MgB2 // Appl. Phys. Lett. 2003. V. 83. № 2. P. 314–316.
  22. Кузнецова Е.И., Криницина Т.П., Блинова Ю.В., Дегтярев М.В., Сударева С.В. Тонкая структура массивного сверхпроводника MgB2 после деформации и термической обработки // ФММ. 2017. Т. 118. № 4. С. 364–371.
  23. Галахов А.В. Неоднородность упаковки в порошковых компактах и прочность получаемой из них керамики // Огнеупоры и техническая керамика. 1997. № 5. С. 14‒19.
  24. Marczyk J., Hebda M. Effect of the Particle Size Distribution of Irregular Al Powder on Properties of Parts for Electronics Fabricated by Binder Jetting // Electronics. 2023. V. 12. P. 2733.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of the initial commercial powder (a), MgB2/Nb,Cu tape without heat treatment (b) and after heat treatment (c).

下载 (19KB)
3. Fig. 2. SEM image of the core structure of MgB2/Nb,Cu tape without heat treatment (a, b) and after heat treatment (c, d).

下载 (29KB)
4. Fig. 3. TEM image of the core structure of the MgB2/Nb,Cu tape without annealing: a – bright-field image (inset on the left – electron diffraction pattern from grains A (white rectangle) and B (white lines), zone axis [101]MgB2, inset on the right – electron diffraction pattern from grain B, zone axis [101]MgB2; b – dark-field image in reflection (110)MgB2; c – dark-field image of grain A in reflection (110)MgB2; d – dark-field image of grain B in reflection (202)MgB2; d – dark-field image of grain B in reflection (101)MgB2.

下载 (42KB)
5. Fig. 4. TEM image of the core structure of the MgB2/Nb,Cu tape without annealing: a – bright-field image; b – electron diffraction pattern; c – dark-field image in the (101)MgB2 reflection.

下载 (21KB)
6. Fig. 5. TEM image of the core structure of the MgB2/Nb,Cu tape without annealing: a – bright-field image; b – electron diffraction pattern; c, d, e – dark-field images in the reflections (110)MgB2, (110)MgB2 and (200)MgO, respectively.

下载 (21KB)
7. Fig. 6. Structure of MgB2 ceramics (a) and EDS spectra obtained from a particle (b) and from a matrix (c).

下载 (25KB)
8. Fig. 7. TEM image of the core structure of the MgB2/Nb,Cu tape after annealing: a – bright-field image at lower magnification; b – electron diffraction pattern; c – bright-field image at higher magnification; d – dark-field image in the MgB2(101)/MgO(200) reflection (outlined by a solid line); d – bright-field image of the adjacent region; e – dark-field image in the MgB2(101)/MgO(200) reflection (outlined by a dotted line).

下载 (31KB)
9. Fig. 8. TEM image of the core structure of the MgB2/Nb,Cu tape after annealing: a – bright-field image; b – dark-field image in the MgB2(101) reflection.

下载 (23KB)
10. Fig. 9. Volt-temperature characteristic of a wire with a diameter of 1 mm (a). Temperature dependence of the specific resistance of tapes with a thickness of 0.75 mm (b) and tapes with a thickness of 0.48 mm (c).

下载 (43KB)