Microscopic modeling of magnetorheological properties in magnetic elastomers
- Авторлар: Musikhin A.Y.1, Zubarev A.Y.1
-
Мекемелер:
- Ural Federal University named after B.N. Yeltsin
- Шығарылым: Том 87, № 4 (2025)
- Беттер: 369-386
- Бөлім: Articles
- ##submission.dateSubmitted##: 07.10.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://edgccjournal.org/0023-2912/article/view/692339
- DOI: https://doi.org/10.7868/S3034543X25040098
- EDN: https://elibrary.ru/npxihg
- ID: 692339
Дәйексөз келтіру
Аннотация
This paper introduces a microscopic model explaining the magnetorheological properties of magnetic elastomers, which are composed of micron-sized magnetizable, without own magnetic moment, particles within a polymer. The study examines composites that are initially isotropic (made without a magnetic field) and anisotropic (polymerized under a magnetic field). Applying an external magnetic field to the composites causes internal anisotropic structures to form (or expand), leading to a notable increase in the material’s shear modulus. The theoretical findings are in good agreement with experimental results.
Негізгі сөздер
Авторлар туралы
A. Musikhin
Ural Federal University named after B.N. Yeltsin
Email: Antoniusmagna@yandex.ru
Lenin Avenue, 51, Yekaterinburg, 620002 Russia
A. Zubarev
Ural Federal University named after B.N. YeltsinLenin Avenue, 51, Yekaterinburg, 620002 Russia
Әдебиет тізімі
- Boczkowska A., Awietjan S.F. Tuning active magnetorheological elastomers for damping applications // Materials Science Forum. 2010. V. 636–637. P. 766. https://doi.org/10.4028/www.scientific.net/MSF.636-637.766
- Lopez-Lopez M.T., Scionti G., Oliveira A.C., Duran J.D.G., Campos A., Alaminos M., Rodriguez I.A. Generation and characterization of novel magnetic field-responsive biomaterials // PLOS ONE. 2015. Vol. 10. № 7. P. e0133878. https://doi.org/10.1371/journal.pone.0133878
- Bira N., Dhagat P., Davidson J.R. A review of magnetic elastomers and their role in soft robotics // Front. Robot. AI. 2020. V. 7. P. 588391. https://doi.org/10.3389/frobt.2020.588391
- Kurlyandskaya G.V., Blyakhman F.A., Makarova E.B., et al. Functional magnetic ferrogels: From biosensors to regenerative medicine // AIP Advances. 2020. V. 10. № 12. P. 125128. https://doi.org/10.1063/9.0000021
- Rajan A., Sahu N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy // J. Nanopart Res. 2020. V. 22. P. 319. https://doi.org/10.1007/s11051-020-05045-9
- Vilas-Boas V. Magnetic hyperthermia for cancer treatment: Main parameters affecting the outcome of in vitro and in vivo studies // Molecules. 2020. V. 25 № 12. P. 2874. https://doi.org/10.3390/molecules25122874
- Li Lingbing. Handbook of materials for nanomedicine: Polymeric nanomaterials. Jenny Stanford Publishing. 2020.
- Chung H-J, Parsons A., Zheng L. Magnetically controlled soft robotics utilizing elastomers and gels in actuation: A review // Adv. Intell. Syst. 2021. V. 3. № 3. P. 2000186. https://doi.org/10.1002/aisy.202000186
- Kaewruethai T., Laomeephol C., Pan Y., Luckanagul J. Multifunctional polymeric nanogels for biomedical applications // Gels. 2021. V. 7. P. 228. https://doi.org/10.3390/GELS7040228
- Sung B., Kim M-H., Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications // Bioeng. Transl. Med. 2021. V. 6. № 1. P. e10190. https://doi.org/10.1002/btm2.10190
- Imran M.M., Affandi A.M., Alam M.M., Khan A., Khan A.I. Advanced biomedical applications of iron oxide nanostructures based ferrofluids // Nanotechnology. 2021. V. 32. № 42. P. 422001. https://doi.org/10.1088/1361-6528/ac137a
- Naghdi M., et al. Magnetic nanocomposites for biomedical applications // Advances in Colloid and Interface Science. 2022. V. 308. P. 102771. https://doi.org/10.1016/j.cis.2022.102771
- Socoliuc V., Avdeev M.V., Kuncser V., Turcu R., Tombácz E., Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward // Nanoscale. 2022. V. 14. № 13. P. 4786–4886. https://doi.org/10.1039/D1NR05841J
- Montiel Schneider M.G., Martín M.J., Otarola J., Vakarelska E., Simeonov V., Lassalle V., Nedyalkova M. Biomedical applications of iron oxide nanoparticles: Current insights, progress and perspectives // Pharmaceutics. 2022. V. 14. № 1. P. 204. https://doi.org/10.3390/pharmaceutics14010204
- Sutrisno J., Purwanto A., Mazlan S.A. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications // Adv. Eng. Mater. 2015. V. 17. № 5. P. 563–597. https://doi.org/10.1002/adem.201400258
- Choi S.B., Li W., Yu M., Du H., Fu J., Do P.X. State of the art of control schemes for smart systems featuring magneto-rheological materials // Smart Mater. Struct. 2016. V. 25. № 4. P. 043001. https://doi.org/10.1088/0964-1726/25/4/043001
- Filipcsei G., Csetneki I., Szilagyi A., Zrinyi M. Magnetic field-responsive smart polymer composites // Adv. Polym. Sci. 2007. V. 206. P. 137–189. https://doi.org/10.1007/12_2006_104
- Shamonin M., Kramarenko E.Yu. Highly responsive magnetoactive elastomers // Novel Magnetic Nanostructures. Amsterdam: Elsevier, 2018. P. 221–245. https://doi.org/10.1016/B978-0-12-813594-5.00007-2
- Gundermann T., Cremer P., Löwen H., Menzel A.M., Odenbach S. Statistical analysis of magnetically soft particles in magnetorheological elastomers // Smart Mater. Struct. 2017. V. 26. № 4. P. 045012. https://doi.org/10.1088/1361-665X/aa5f96
- Stepanov G.V., Abramchuk S.S., Grishin D.A., Nikitin L.V., Kramarenko E.Y., Khokhlov A.R. Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers // Polymer. 2007. V. 48. № 2. P. 488–495. https://doi.org/10.1016/j.polymer.2006.11.044
- Stoll A., Mayer M., Monkman G.J., Shamonin M. Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response // J. Appl. Polym. Sci. 2014. V. 131. № 2. P. 39793. https://doi.org/10.1002/app.39793
- Abramchuk S.S., Grishin D.A., Kramarenko E.Yu., Stepanov G.V., Khokhlov A.R. Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression // Polymer Science A. 2006. V. 48. № 2. P. 138–145. https://doi.org/10.1134/S0965545X06020064
- Stepanov G.V., Kramarenko E.Y., Semerenko D.A. Magnetodeformational effect of the magnetoactive elastomer and its possible applications // J. Phys. Conf. Ser. 2013. V. 412. P. 012031. https://doi.org/10.1088/1742-6596/412/1/012031
- Galipeau E., Ponte Castañeda P. Giant field-induced strains in magnetoactive elastomer composites // Proc. Royal Soc. A. 2013. V. 469. № 2158. P. 20130385. https://doi.org/10.1098/rspa.2013.0385
- Yu M., Luo H., Fu J., Yang P. The field-dependent conductivity of dimorphic magnetorheological gel incorporated with iron nanowire // J. Intelligent Mater. Syst. Struct. 2018. V. 29. № 1. P. 24–31. https://doi.org/10.1177/1045389X17733056
- Bica I. Influence of the magnetic field on the electric conductivity of magnetorheological elastomers // J. Ind. Eng. Chem. 2010. V. 16. № 3. P. 359–363. https://doi.org/10.1016/j.jiec.2010.01.034
- Kostrov S.A., Shamonin M., Stepanov G.V., Kramarenko E.Yu. Magnetodielectric response of soft magnetoactive elastomers: effects of filler concentration and measurement frequency // Int. J. Molec. Sci. 2019. V. 20. № 9. P. 2230. https://doi.org/10.3390/ijms20092230
- Костров С.А., Городов В.В., Музафаров А.М., Крамаренко Е.Ю. Сравнительный анализ магнитореологического эффекта в мягких изотропных и анизотропных магнитоактивных эластомерах // Высокомолекулярные соединения. Серия Б. 2022. Т. 64. № 6. P. 471–480. https://doi.org/10.31857/S2308113922700231
- Chen L., Gong X.L., Li W.H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers // Smart Mater. Struct. 2007. V. 16. № 6. P. 2645. https://doi.org/10.1088/0964-1726/16/6/069
- Khanouki M.A., Sedaghati R., Hemmatian M. Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers // Composites. B. 2019. V. 176. P. 107311. https://doi.org/10.1016/j.compositesb.2019.107311
- Jolly M.R., Carlson J.D., Munoz B.C. model of the behaviour of magnetorheological materials // Smart Mater Struct. 1996. V. 5. P. 607.
- Ivaneyko D., Toshchevikov V., Saphiannikova M. Dynamic-mechanical behaviour of anisotropic magneto-sensitive elastomers // Polymer. 2018. V. 147. P. 95–107. https://doi.org/10.1016/j.polymer.2018.04.057
- Borin D., Stepanov G., Bakhtiiarov A., et al. Magnetorheological effect of magnetoactive elastomer with a permalloy filler // Polymers. 2020. V. 12. № 10. P. 1–25. https://doi.org/10.3390/polym12102371
- Hoang N., Zhang N., Du H. Adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction // Smart Materials and Structures. 2010. V. 20. № 1. P. 015019. https://doi.org/10.1088/0964-1726/20/1/015019
- Gila-Vilchez C., Bonhome-Espinosa A., Kuzhir P., Zubarev A., Duran J.D.G., et al. Rheology of magnetic alginate hydrogels // J. Rheol. 2018. V. 62. № 5. P. 1083–1096. https://doi.org/10.1122/1.5028137
- Borin D., Gunther D., Hintze C., Heinrich G., Odenbach S. The level of cross-linking and the structure of anisotropic magnetorheological elastomers // J. Magnetism and Magnetic Materials. 2012. V. 324. № 21. P. 3452–3454. https://doi.org/10.1016/j.jmmm.2012.02.063
- Zubarev A.Yu., et al. Hysteresis of the magnetic properties of soft magnetic gels // Soft Matter. 2016. V. 12. № 30. P. 6473–6480. https://doi.org/10.1039/C6SM01257D
- See H., Doi M. Aggregation kinetics in electro-rheological fluids // J. Phys. Soc. Jpn. 1991. V. 60. P. 2778–2782. https://doi.org/10.1143/JPSJ.60.2778
- Hill T.L. Statistical mechanics: Principles and selected applications. Courier Corporatiopn. 2013.
- Landau L.D., Lifshitz E.M. Electrodynamics of continuous media. New York: Pergamon. 1960.
- Bozorth R.M. Ferromagnetism. Wiley, New York. 1993.
- Rosensweig R. Ferrohydrodynamics. Cambridge University Press, Cambridge. 1985.
- Pokrovskii V.N. Statistical Mechanics of Dilute Suspensions. Moscow: Nauka. 1978.
- Krieger I.M., Dougherty T.J. A mechanism for non-newtonian flow in suspension of rigid spheres // Trans. Soc. Rheol. 1959. V. 3. № 1. P. 137–152. https://doi.org/10.1122/1.548848
- Barnes H.A., Hutton J.F., Walters K. An introduction to rheology. Amsterdam: Elsevier. 1989.
- Batchelor G. The stress generated in a non-dilute suspension of elongated particles by pure straining motion // J. Fluid Mech. 1971. V. 46. P. 813–29.
- Biller A.M., Stolbov O.V., Raikher Yu.L. Modeling of particle interactions in magnetorheological elastomers // J.Applied Physics. 2014. V. 116. № 1. P. 114904. https://doi.org/10.1063/1.4895980
- Shouhu Xuan, Yangguang Xu, Taixiang Liu & Xinglong Gong. Recent progress on the magnetorheological plastomers // International Journal of Smart and Nano Materials. 2015. V. 6. № 2. P. 135–148. https://doi.org/10.1080/19475411.2015.1062437
Қосымша файлдар
