Capillary forces between rough surfaces produced by the micro/nanotechnology methods
- 作者: Uvarov I.V.1,2, Svetovoy V.B.3
-
隶属关系:
- Центр научно-информационных технологий – ЯрославльОтделения физико-технологических исследований имени К.А. ВалиеваНИЦ «Курчатовский Институт»
- Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет им. П.Г. Демидова»
- Федеральное государственное бюджетное учреждение науки Инститyт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
- 期: 卷 87, 编号 4 (2025)
- 页面: 428-442
- 栏目: Articles
- ##submission.dateSubmitted##: 07.10.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://edgccjournal.org/0023-2912/article/view/692343
- DOI: https://doi.org/10.7868/S3034543X25040134
- EDN: https://elibrary.ru/nqafpi
- ID: 692343
如何引用文章
详细
Capillary forces are one of the main sources of adhesion between the elements of microtechnological devices. This phenomenon manifests itself during the fabrication or operation of a device and plays a negative or positive role. The paper describes a method that makes it possible to estimate the capillary force between hydrophilic rough surfaces as a function of the relative humidity and the nominal contact area. The method is based on counting the number of roughness asperities, which are able to form capillary bridges spontaneously. To implement the method, detailed information about the roughness of the contacting surfaces is required, which can be obtained using an atomic force microscope (AFM). The idea of the method is illustrated, using as an example, deposited gold films of different thickness that come into contact with a smooth silicon surface. AFM scans of a surface with an area of 20×20 µm2 and a resolution of 4096 pixels per line are used. The developed theory reproduces the basic patterns observed experimentally. In particular, it is shown that the relative role of capillary forces decreases with an increase in the nominal contact area, and dispersion forces begin to play a major role in adhesion. The results of the work are important for the design of microsystems and experiments measuring dispersion forces.
作者简介
I. Uvarov
Центр научно-информационных технологий – ЯрославльОтделения физико-технологических исследований имени К.А. ВалиеваНИЦ «Курчатовский Институт»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет им. П.Г. Демидова»Кул. Университетская, д. 21, Ярославль, 150067 Россия; ул. Советская, д. 14, Ярославль, 150003 Россия
V. Svetovoy
Федеральное государственное бюджетное учреждение науки Инститyт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Email: v.svetovoy@phyche.ac.ru
Ленинский пр-т, д. 31, корп. 4, Москва, 119071 Россия
参考
- Legtenberg R., et al. Stiction of surface micromachined structures after rinsing and drying: model and investigation of adhesion mechanisms // Sensors and actuators A: Physical. 1994. V. 43. № 1–3. P. 230–238. https://doi.org/10.1016/0924-4247(93)00654-M
- Tas N., et al. Stiction in surface micromachining // Journal of Micromechanics and Microengineering. 1996. V. 6. № 4. P. 385. https://doi.org/10.1088/0960-1317/6/4/005
- Maboudian R., Howe R.T. Critical review: Adhesion in surface micromechanical structures // Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1997. V. 15. № 1. P. 1–20. https://doi.org/10.1116/1.589247
- Saleem M.M., Nawaz H.A systematic review of reliability issues in RF-MEMS switches // Micro and Nanosystems. 2019. V. 11. № 1. P. 11–33. https://doi.org/10.2174/1876402911666190204113856
- DelRio F.W., et al. The role of van der Waals forces in adhesion of micromachined surfaces // Nature materials. 2005. V. 4. № 8. P. 629–634. https://doi.org/10.1038/nmat1431
- Palasantzas G., Sedighi M., Svetovoy V.B. Applications of Casimir forces: Nanoscale actuation and adhesion // Applied Physics Letters. 2020. V. 117. № 12. P. 120501. https://doi.org/10.1063/5.0023150
- Lyashenko I.A., Popov V.L. Effect of roughness on capillary contact shapes in tangential shear: Experiments // Physical Mesomechanics. 2021. V. 24. № 5. P. 561–569. https://doi.org/10.1134/S1029959921050076
- Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory // Journal of Microelectromechanical systems. 1993. V. 2. № 1. P. 33–43. https://doi.org/10.1109/84.232593
- Mastrangelo C.H., Hsu C.H. Mechanical stability and adhesion of microstructures under capillary forces. II. Experiments // Journal of Microelectromechanical systems. 1993. V. 2. № 1. P. 44–55. https://doi.org/10.1109/84.232594
- De Boer M.P., Michalske T.A. Accurate method for determining adhesion of cantilever beams // Journal of Applied Physics. 1999. V. 86. № 2. P. 817–827. https://doi.org/10.1063/1.370809
- Knapp J.A., de Boer M.P. Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces // Journal of Microelectromechanical Systems. 2002. V. 11. № 6. P. 754–764. https://doi.org/10.1109/JMEMS.2002.805047
- DelRio F.W., et al. Rough surface adhesion in the presence of capillary condensation // Applied Physics Letters. 2007. V. 90. № 16. P. 163104. https://doi.org/10.1063/1.2723658
- De Boer M.P. Capillary adhesion between elastically hard rough surfaces // Experimental mechanics. 2007. V. 47. P. 171–183. https://doi.org/10.1007/s11340-006-0631-z
- Svetovoy V.B., et al. Measuring the dispersion forces near the van der Waals–Casimir transition // Physical Review Applied. 2020. V. 13. № 6. P. 064057. https://doi.org/10.1103/PhysRevApplied.13.064057
- Harris B.W., Chen F., Mohideen U. Precision measurement of the Casimir force using gold surfaces // Physical Review A. 2000. V. 62. № 5. P. 052109. https://doi.org/10.1103/PhysRevA.62.052109
- Liu M., et al. Precision measurements of the gradient of the Casimir force between ultraclean metallic surfaces at larger separations // Physical Review A. 2019. V. 100. № 5. P. 052511. https://doi.org/10.1103/PhysRevA.100.052511
- Torricelli G., et al. Switching Casimir forces with phase-change materials // Physical Review A – Atomic, Molecular, and Optical Physics. 2010. V. 82. № 1. P. 010101. https://doi.org/10.1103/PhysRevA.82.010101
- Sedighi M., Svetovoy V.B., Palasantzas G. Casimir force measurements from silicon carbide surfaces // Physical Review B. 2016. V. 93. № 8. P. 085434. https://doi.org/10.1103/PhysRevB.93.085434
- Ata A., Rabinovich Y.I., Singh R.K. Role of surface roughness in capillary adhesion // Journal of Adhesion Science and Technology. 2002. V. 16. № 4. P. 337–346. https://doi.org/10.1163/156856102760067145
- Van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of random roughness on the adhesion between metal surfaces due to capillary condensation // Applied Physics Letters. 2007. V. 91. № 10. P. 101905. https://doi.org/10.1063/1.2768919
- Van Zwol P.J., Palasantzas G., De Hosson J.T.M. Influence of roughness on capillary forces between hydrophilic surfaces // Physical Review E – Statistical, Nonlinear, and Soft Matter Physics. 2008. V. 78. № 3. P. 031606. https://doi.org/10.1103/PhysRevE.78.031606
- Postnikov A.V., Uvarov I.V., Svetovoy V.B. Measurement of the adhesion energy between Si and Au caused by dispersion forces // Physical Review B. 2025. V. 111. № 8. P. 085420. https://doi.org/10.1103/PhysRevB.111.085420
- Broer W., et al. Roughness correction to the Casimir force at short separations: Contact distance and extreme value statistics // Physical Review B – Condensed Matter and Materials Physics. 2012. V. 85. № 15. P. 155410. https://doi.org/10.1103/PhysRevB.85.155410
- Meakin P. The growth of rough surfaces and interfaces // Physics Reports. 1993. V. 235. № 4–5. P. 189–289. https://doi.org/10.1016/0370-1573(93)90047-H
- Persson B.N.J. Relation between interfacial separation and load: a general theory of contact mechanics // Physical Review Letters. 2007. V. 99. № 12. P. 125502. https://doi.org/10.1103/PhysRevLett.99.125502
- Parsons D.F., Walsh R.B., Craig V.S.J. Surface forces: Surface roughness in theory and experiment // The Journal of Chemical Physics. 2014. V. 140. № 16. P. 164501. https://doi.org/10.1063/1.4871412
- Van Zwol P.J., Svetovoy V.B., Palasantzas G. Distance upon contact: Determination from roughness profile // Physical Review B – Condensed Matter and Materials Physics. 2009. V. 80. № 23. P. 235401. https://doi.org/10.1103/PhysRevB.80.235401
- Muravyeva T.I., et al. Excessive number of high asperities for sputtered rough films // Physical Review B. 2021. V. 104. № 3. P. 035415. https://doi.org/10.1103/PhysRevB.104.035415
- Гумбель Э. Статистика экстремальных значений // Мир. Москва. 1965.
- Greenwood J.A., Tripp J.H. The contact of two nominally flat rough surfaces // Proceedings of the institution of mechanical engineers. 1970. V. 185. № 1. P. 625–633. https://doi.org/10.1243/PIME_PROC_1970_185_069_02
- Soldatenkov I.A., Stepanov F.I., Svetovoy V.B. Dispersion forces and equilibrium distance between deposited rough films in contact // Physical Review B. 2022. V. 105. № 7. P. 075401. https://doi.org/10.1103/PhysRevB.105.075401
- Palasantzas G. Roughness spectrum and surface width of self-affine fractal surfaces via the K-correlation model // Physical Review B. 1993. V. 48. № 19. P. 14472–14478. https://doi.org/10.1103/PhysRevB.48.14472
- Islam A.Z.M.A., Klassen R.J. Kinetics of length-scale dependent plastic deformation of gold microspheres // Journal of Materials Research. 2017. V. 32. № 18. P. 3507–3515. https://doi.org/10.1557/jmr.2017.223
- Johnson K.L., Kendall K., Roberts A.A.D. Surface energy and the contact of elastic solids // Proceedings of the Royal Society of London. A. Mathematical and physical sciences. 1971. V. 324. № 1558. P. 301–313. https://doi.org/10.1098/rspa.1971.0141
- Derjaguin B.V., Muller V.M., Toporov Y.P. Effect of contact deformations on the adhesion of particles // Journal of Colloid and Interface Science. 1975. V. 53. № 2. P. 314–326. https://doi.org/10.1016/0021-9797(75)90018-1
- Muller V.M., Yushchenko V.S., Derjaguin B.V. On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane // Journal of Colloid and Interface Science. 1980. V. 77. № 1. P. 91–101. https://doi.org/10.1016/0021-9797(80)90419-1
补充文件
