Hydrocarbon-Oxidizing Bacteria of the Bottom Ecotopes of the Barents and Pechora Seas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Microorganisms capable of degrading hydrocarbons are regular components of natural microbial communities and play an important role in self-purification of marine environments from oil contamination. High-throughput sequencing of the 16S rRNA gene V4 variable region was used to analyze microbial communities of the Barents and Pechora seas and of the microcosms with a spectrum of hydrocarbon substrates: oil, n-nonane, n-undecane, and phenanthrene. The Barents Sea communities of hydrocarbon-oxidizing microorganisms were characterized by predominance of the genera Pseudoalteromonas, Pseudomonas, Porticoccus, and Oleispira, while those of the Pechora Sea contained members of the genera Rhodococcus, Dietzia, Sphingorhabdus, and Hyphomonas. Pure cultures of these microorganisms were shown to utilize the major oil hydrocarbons: n-alkanes, cycloalkanes, and aromatic compounds.

全文:

受限制的访问

作者简介

V. Pyrkin

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

L. Gavirova

Lomonosov Moscow State University

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

A. Stroeva

Lomonosov Moscow State University

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

A. Merkel

Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

O. Vidishcheva

Lomonosov Moscow State University

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

A. Kalmykov

Lomonosov Moscow State University

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow

E. Bonch-Osmolovskaya

Lomonosov Moscow State University; Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences

Email: vladisluw@yandex.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Гордадзе Г. Н., Гируц М. В., Пошибаева А. Р., Кошелев В. Н. Химия нефти с основами органической геохимии. М.: РГУ нефти и газа имени И. М. Губкина, 2015. 80 с.
  2. Еремин Н. А., Кондратюк А. Т., Еремин А. Н. Ресурсная база нефти и газа арктического шельфа России // Георесурсы, геоэнергетика, геополитика. 2010. № 1 (1). С. 23.
  3. Меркель А. Ю., Тарновецкий И. Ю., Подосокорская О. А., Тощаков С. В. Анализ систем праймеров на ген 16S рРНК для профилирования термофильных микробных сообществ // Микробиология. 2019. Т. 88. С. 655–664.
  4. Merkel A. Yu., Tarnovetskii I. Yu., Podosokorskaya O. A., Toshchakov S. V. Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities // Microbiology (Moscow). 2019. V. 88. P. 671–681.
  5. Патин С. А. Нефть и экология континентального шельфа. М.: Издательство ВНИРО, 2017. 284 с.
  6. Callahan B. J., McMurdie P.J., Rosen M. J., Han A. W., Johnson A. J.A., Holmes S. P. DADA2: High-resolution sample inference from Illumina amplicon data // Nature Methods. 2016. V. 13. P. 581–583.
  7. Caruso V., Song X., Asquith M., Karstens L. Performance of microbiome sequence inference methods in environments with varying biomass // MSystems. 2019. V. 4. https://doi.org/10.1128/msystems.00163–18.
  8. De Carvalho C. C.C.R., Costa S. S., Fernandes P., Couto I., Viveiros M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus // Front. Physiol. 2014. V. 5. Art. 133.
  9. Fisher S. J., Alexander R., Kagi R. I., Oliver G. A. Aromatic hydrocarbons as indicators of biodegradation in north Western Australian reservoirs // Sedimentary Basins of Western Australia: West Australian Basins Symposium / Ed. Purcell P. G., Purcell R. R. Perth, 1998. P. 185–194.
  10. Gohl D. M., Vangay P., Garbe J., MacLean A., Hauge A., Becker A., Beckman K. B. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies // Nature Biotechnol. 2016. V. 34. P. 942–949.
  11. Hugerth L. W., Wefer H. A., Lundin S., Jakobsson H. E., Lindberg M., Rodin S., Andersson A. F. DegePrime, a program for degenerate primer design for broad-taxonomic-range PCR in microbial ecology studies // Appl. Environ. Microbiol. 2014. V. 80. P. 5116–5123.
  12. Lea-Smith D.J., Biller S. J., Davey M. P., Cotton C. A., Perez Sepulveda B. M., Turchyn A. V., Howe C. J. Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 13591–13596.
  13. Nõlvak H., Dang N. P., Truu M., Peeb A., Tiirik K., O’Sadnick M., Truu J. Microbial community dynamics during biodegradation of crude oil and its response to biostimulation in Svalbard seawater at low temperature // Microorganisms. 2021. V. 9. Art. 2425.
  14. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Glöckner F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2012. V. 41. D1. P. D590–D596.
  15. Rogozhin V., Osadchiev A., Konovalova O. Structure and variability of the Pechora plume in the southeastern part of the Barents Sea // Front. Mar. Sci. 2023. V. 10. Art. 1052044.
  16. Wang X. B., Chi C. Q., Nie Y., Tang Y. Q., Tan Y., Wu G., Wu X. L. Degradation of petroleum hydrocarbons (C6–C40) and crude oil by a novel Dietzia strain // Bioresour. Technol. 2011. V. 102. P. 7755–7761.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Averaged phylogenetic composition of microcosm communities from bottom water and soil of the Barents (a) and Pechora (b) Seas obtained by NGS profiling on 16S rRNA gene

下载 (306KB)
3. Fig. 2. Histogram of ratios of biodegradation markers of n-alkanes (a) and aromatic compounds (b) by the studied pure cultures of microorganisms

下载 (236KB)

版权所有 © Russian Academy of Sciences, 2024