Фактор транскрипции PAX4: роль в дифференцировке инсулинпродуцирующих клеток в ходе развития поджелудочной железы и связь с диабетом
- Авторы: Мельникова А.И.1,2, Краснова Т.С.1, Рубцов П.М.1
-
Учреждения:
- Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
- Московский физико-технический институт
- Выпуск: Том 59, № 2 (2025)
- Страницы: 189-200
- Раздел: ОБЗОРЫ
- URL: https://edgccjournal.org/0026-8984/article/view/682875
- DOI: https://doi.org/10.31857/S0026898425020023
- EDN: https://elibrary.ru/GGXQEP
- ID: 682875
Цитировать
Аннотация
PAX4 (Paired Box 4) – это фактор транскрипции, который экспрессируется в основном в поджелудочной железе и играет ключевую роль в развитии инсулинпродуцирующих β-клеток в эмбриогенезе. PAX4 является основным регулятором адаптации зрелых β-клеток в условиях патологии. Важность этого фактора для правильного функционирования островковых клеток поджелудочной железы обнаружена при изучении связи мутаций в гене PAX4 с развитием разных форм сахарного диабета. Сверхэкспрессия этого фактора во взрослых островках стимулирует пролиферацию β-клеток и их устойчивость к апоптозу. В совокупности эти данные указывают на PAX4 как на потенциальную мишень новых методов лечения сахарного диабета, направленных на репрограммирование клеток разного типа в инсулинпродуцирующие и стимуляцию пролиферации этих клеток для восполнения массы β-клеток, утраченных при прогрессировании заболевания. Разработка таких методов требует знания молекулярных механизмов, контролирующих экспрессию гена PAX4 и его генов-мишеней. В настоящем обзоре суммированы данные о структуре и экспрессии гена PAX4 человека. Описано взаимодействие разных факторов транскрипции в ходе дифференцировки клеток поджелудочной железы и формирования островков Лангерганса, а также роль PAX4 в этих процессах. Рассмотрена связь мутаций в гене PAX4 человека с развитием разных форм сахарного диабета и перспективы перепрограммирования клеток разного типа в инсулинпродуцирующие клетки. Обсуждается возможность разработки новых подходов к лечению сахарного диабета, основанных на воздействии на регулируемые PAX4 сигнальные пути.
Полный текст

Об авторах
А. И. Мельникова
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук; Московский физико-технический институт
Email: rubtsov@eimb.ru
Россия, Москва; Долгопрудный, Московская область
Т. С. Краснова
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
Email: rubtsov@eimb.ru
Россия, Москва
П. М. Рубцов
Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
Автор, ответственный за переписку.
Email: rubtsov@eimb.ru
Россия, Москва
Список литературы
- Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А., Сазонова Д.В., Мокрышева Н.Г. (2023) Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. Сахарный диабет. 26, 104–123.
- Lorenzo P.I., Juárez-Vicente F., Cobo-Vuilleumier N., García-Domínguez M., Gauthier B.R. (2017) Diabetes-linked transcription factor PAX4: from gene to functional consequences. Genes (Basel). 8(3), 101.
- Napolitano T., Avolio F., Courtney M., Vieira A., Druelle N., Ben-Othman N., Hadzic B., Navarro S., Collombat P. (2015) Pax4 acts as a key player in pancreas development and plasticity. Semin. Cell. Dev. Biol. 44, 107–114.
- Ko J., Fonseca V.A., Wu H. (2023) Pax4 in health and diabetes. Int. J. Mol. Sci. 24, 8283.
- Gutjahr T., Vanario-Alonso C.E., Pick L., Noll M. (1994) Multiple regulatory elements direct the complex expression pattern of the Drosophila segmentation gene paired. Mech. Dev. 48, 119–128.
- Czerny T., Schaffner G., Busslinger M. (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061.
- Wang Q., Fang W.H., Krupinski J., Kumar S., Slevin M., Kumar P. (2008) Pax genes in embryogenesis and oncogenesis. J. Cell. Mol. Med. 12, 2281–2294.
- Sosa-Pineda B., Chowdhury K., Torres M., Oliver G., Gruss P. (1997) The PAX4 gene is essential for differentiation of insulin-producing β cells in the mammalian pancreas. Nature. 386, 399–402.
- Smith S.B., Ee H.C., Conners J.R., German M.S. (2015) Paired-homeodomain transcription factor PAX4 acts as a transcriptional repressor in early pancreatic development. Mol. Cell. Biol. 19, 8272–8280.
- Mayran A., Pelletier A., Drouin J. (2015) Pax factors in transcription and epigenetic remodelling. Semin. Cell. Dev. Biol. 44, 135–144.
- Maas R.L., Xu W., Pabo C.O., Xu H.E., Epstein J.A., Rould M.A. (2008) Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Dev. 13, 1263–1275.
- Jun S., Desplan C. (1996) Cooperative interactions between paired domain and homeodomain. Development. 112, 2639–2650.
- Fujitani Y., Kajimoto Y., Yasuda T., Matsuoka T.A, Kaneto H., Umayahara Y., Fujita N., Watada H., Miyazaki J.I., Yamasaki Y., Hori M. (1999) Identification of a portable repression domain and an E1A-responsive activation domain in Pax4: a possible role of Pax4 as a transcriptional repressor in the pancreas. Mol. Cell. Biol. 19, 8281–8291.
- Tokuyama Y., Yagui K., Sakurai K., Hashimoto N., Saito Y., Kanatsuka A. (1998) Molecular cloning of rat Pax4: identification of four isoforms in rat insulinoma cells. Biochem. Biophys. Res. Commun. 248, 1153–1156.
- Miyamoto T., Kakizawa T., Ichikawa K., Nishio S., Kajikawa S., Hashizume K. (2001) Expression of dominant negative form of PAX4 in human insulinoma. Biochem. Biophys. Res. Commun. 282, 34–40.
- Smith S.B., Watada H., Scheel D.W., Mrejen C., German M.S. (2000) Autoregulation and maturity onset diabetes of the young transcription factors control the human PAX4 promoter. J. Biol. Chem. 275, 36910–36919.
- Мельникова А.И., Краснова Т.С., Зубкова Н.А., Тюльпаков А.Н., Рубцов П.М. (2021) Альтернативные варианты фактора транскрипции PAX4 человека: сравнение транскрипционной активности. Молекуляр. биология. 54, 849–857.
- Shimajiri Y., Sanke T., Furuta H., Hanabusa T., Nakagawa T., Fujitani Y., Kajimoto Y., Takasu N., Nanjo K.A. (2001) Missense mutation of PAX4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes. 50, 2864–2869.
- Hu He K.H., Lorenzo P.I., Brun T., Jimenez Moreno C.M., Aeberhard D., Vallejo Ortega J., Cornu M., Thorel F., Gjinovci A., Thorens B., Herrera P.L., Meda P., Wollheim C.B., Gauthier B.R. (2011) In vivo conditional Pax4 overexpression in mature islet β-cells prevents stress-induced hyperglycemia in mice. Diabetes. 60, 1705–1715.
- Зубкова Н.А., Гиоева О.А., Петров В.М., Васильев Е.В., Тимофеев А.В., Абрукова А.В., Тюльпаков А.Н. (2017) Наследственный вариант сахарного диабета, обусловленного дефектом гена PAX4 (MODY9). – Первое описание в России. Сахарный диабет. 20, 384–387.
- Kooptiwut S., Plengvidhya N., Chukijrungroat T., Sujjitjoon J. (2012) Defective PAX4 R192H transcriptional repressor activities associated with Maturity Onset Diabetes of the Young and Early Onset-Age of Type 2 Diabetes. J. Diabetes Complications. 26, 343–347.
- Sujjitjoon J., Kooptiwut S., Chongjaroen N., Semprasert N., Hanchang W., Chanprasert K., Tangjittipokin W., Yenchitsomanus P.T., Plengvidhya N. (2016) PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects. J. Hum. Genet. 61, 943–949.
- Gao A., Gu B., Zhang J., Fang C., Su J., Li H., Han R., Ye L., Wang W., Ning G., Wang J., Gu W. (2021) Missense variants in PAX4 аre associated with early-onset diabetes in Chinese. Diabetes Ther. 12, 289–300.
- Plengvidhya N., Kooptiwut S., Songtawee N., Doi A., Furuta H., Nishi M., Nanjo K., Tantibhedhyangkul W., Boonyasrisawat W., Yenchitsomanus P.T., Doria A., Banchuin N. (2017) PAX4 mutations in Thais with maturity-onset diabetes of the young. J. Clin. Endocrinol. Metab. 92, 2821–2826.
- Lee D.H., Kwak H., Park H.S., Ku E.J., Jeon H.J., Oh T.K. (2021) Identification of candidate gene variants of monogenic diabetes using targeted panel sequencing in early onset diabetes patients. BMJ Open Diabetes Res. Care. 9, e002217.
- Jo W., Endo M., Ishizu K., Nakamura A., Tajima T. (2011) A novel PAX4 mutation in a Japanese patient with maturity-onset diabetes of the young. Tohoku J. Exp. Med. 223, 113–118.
- Sujjitjoon J., Kooptiwut S., Chongjaroen N., Tangjittipokin W., Plengvidhya N., Yenchitsomanus P.T. (2016) Aberrant mRNA splicing of paired box 4 (PAX4) IVS7-1G>A mutation causing maturity-onset diabetes of the young, type 9. Acta Diabetol. 53, 205–216.
- Zhang D., Chen C., Yang W., Piao Y., Ren L., Sang Y. (2022) C.487C>T mutation in PAX4 gene causes MODY9: а case report and literature review. Medicine (Baltimore). 101, e32461.
- Cheung C.Y., Tang C.S., Xu A., Lee C.H., Au K.W., Xu L., Fong C.H., Kwok K.H., Chow W.S., Woo Y.C., Yuen M.M., Hai J.S., Jin Y.L., Cheung B.M., Tan K.C., Cherny S.S., Zhu F., Zhu T., Thomas G.N., Cheng K.K., Jiang C.Q., Lam T.H., Tse H.F., Sham P.C., Lam K.S. (2017) Exome-chip association analysis reveals an Asian-specific missense variant in PAX4 associated with type 2 diabetes in Chinese individuals. Diabetologia. 60, 107–115.
- Glotov O.S., Serebryakova E.A., Turkunova M.E., Efimova O.A., Glotov A.S., Barbitoff Y.A., Nasykhova Y.A., Predeus A.V., Polev D.E., Fedyakov M.A., Polyakova I.V., Ivashchenko T.E., Shved N.Y., Shabanova E.S., Tiselko A.V., Romanova O.V., Sarana A.M., Pendina A.A., Scherbak S.G., Musina E.V., Petrovskaia-Kaminskaia A.V., Lonishin L.R., Ditkovskaya L.V., Zhelenina L.А., Tyrtova L.V., Berseneva O.S., Skitchenko R.K., Suspitsin E.N., Bashnina E.B., Baranov V.S. (2019) Whole-exome sequencing in Russian children with non-type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY-related and unrelated genes. Mol. Med. Rep. 20, 4905–4914.
- Zubkova N., Burumkulova F., Plechanova M., Petrukhin V., Petrov V., Vasilyev E., Panov A., Sorkina E., Ulyatovskaya V., Makretskaya N., Tiulpakov A. (2019) High frequency of pathogenic and rare sequence variants in diabetes-related genes among Russian patients with diabetes in pregnancy. Acta Diabetol. 56, 413–420.
- Wang D.W., Yuan J., Yang F.Y., Qiu H.Y., Lu J., Yang J.K. (2022) Early-onset diabetes involving three consecutive generations had different clinical features from age-matched type 2 diabetes without a family history in China. Endocrine. 78, 47–56.
- Mauvais-Jarvis F., Smith S.B., Le May C., Leal S.M., Gautier J.F., Molokhia M., Riveline J.P., Rajan A.S., Kevorkian J.P., Zhang S., Vexiau P., German M.S., Vaisse C. (2004) (PAX4) gene variations predispose to ketosis-prone diabetes. Hum. Mol. Genet. 13, 3151–3159.
- Zhou G.H., Tao M., Wang Q., Chen X.Y., Liu J., Zhang L.L. (2023) Maturity-onset diabetes of the young type 9 or latent autoimmune diabetes in adults: а case report and review of literature. World J. Diabetes. 14, 1137–1145.
- Abreu G.M., Soares C., Tarantino R.M., Fonseca A.C.P., Souza R.B., Pereira M.F.C., Cabello P.H., Rodacki M., Zajdenverg L., Zembrzuski V.M., Campos Junior M. (2020) Identification of the first PAX4-MODY family reported in Brazil. Diabetes Metab. Syndr. Obesity. 13, 2623–2631.
- Kwak S.H., Jung C.H., Ahn C.H., Park J., Chae J., Jung H.S., Cho Y.M., Lee D.H., Kim J., Park K.S. (2016) Clinical whole exome sequencing in early onset diabetes patients. Diabetes Res. Clin. Pract. 122, 71–77.
- Lau H.H., Krentz N.A.J., Abaitua F., Perez-Alcantara M., Chan J.W., Ajeian J., Ghosh S., Lee Y., Yang J., Thaman S., Champon B., Sun H., Jha A., Hoon S., Tan N.S., Gardner D.S., Kao S.L., Tai E.S., Gloyn A.L., Teo A.K.K. (2023) PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat. Commun. 14, 6119.
- Pezzilli S., Ludovico O., Biagini T., Mercuri L., Alberico F., Lauricella E., Dallali H., Capocefalo D., Carella M., Miccinilli E., Piscitelli P., Scarale M.G., Mazza T., Trischitta V., Prudente S. (2018) Insights from molecular characterization of adult patients of families with multigenerational diabetes. Diabetes. 67, 137–145.
- Kamal M.M., Islam M.N., Rabby M.G., Zahid M.A., Hasan M.M. (2024) In silico functional and structural analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in human paired box 4 gene. Biochem. Genet. 62, 2975–2998.
- Billings L.K., Shi Z., Resurreccion W.K., Wang C.H., Wei J., Pollin T.I., Udler M.S., Xu J. (2022) Statistical evidence for high-penetrance MODY-causing genes in a large population-based cohort. Endocrinol. Diabetes Metab. 5, e372.
- Laver T.W., Wakeling M.N., Knox O., Colclough K., Wright C.F., Ellard S., Hattersley A.T., Weedon M.N., Patel K.A. (2022) Evaluation of evidence for pathogenicity demonstrates that BLK, KLF11, and PAX4 should not be included in diagnostic testing for MODY. Diabetes. 71, 1128–1136.
- Lau H.H., Krentz N.A.J., Abaitua F., Perez-Alcantara M., Chan J.W., Ajeian J., Ghosh S., Lee Y., Yang J., Thaman S., Champon B., Sun H., Jha A., Hoon S., Tan N.S., Gardner D.S., Kao S.L., Tai E.S., Gloyn A.L., Teo A.K.K. (2023) PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development. Nat. Commun. 14(1), 6119.
- Gage B.K., Asadi A., Baker R.K., Webber T.D., Wang R., Itoh M., Kieffer T.J. (2015) The role of ARX in human pancreatic endocrine specification. PLoS One. 10(12), e0144100.
- Collombat P., Hecksher-Sørensen J., Broccoli V., Krull J., Ponte I., Mundiger T., Mansouri A. (2005) The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the α- and β-cell lineages in the mouse endocrine pancreas. Development. 132, 2969–2980.
- Ravaud C., Courtney M., Gjernes E., Vieira A., Ben-Othman N., Pfeifer A., Collombat P. (2013) The inactivation of Arx in pancreatic α-cells triggers their neogenesis and conversion into functional β-like. PLoS Genet. 9, 1–19.
- Eto K., Nishimura W., Oishi H., Udagawa H., Kawaguchi M., Hiramoto M., Fujiwara T., Takahashi S., Yasuda K. (2014) MafA is required for postnatal proliferation of pancreatic β-cells. PLoS One. 9(8), e104184.
- Bonnavion R., Jaafar R., Kerr-Conte J., Assade F., van Stralen E., Leteurtre E., Pouponnot C., Gargani S., Pattou F., Bertolino P., Cordier-Bussat M., Lu J., Zhang C.X. (2013) Both PAX4 and MAFA are expressed in a substantial proportion of normal human pancreatic alpha cells and deregulated in patients with type 2 diabetes. PLoS One. 8(8), e72194.
- Brun T., Duhamel D.L., Hu He K.H., Wollheim C.B., Gauthier B.R. (2007) The transcription factor PAX4 acts as a survival gene in INS-1E insulinoma cells. Oncogene. 26, 4261–4271.
- Lu J., Li G., Lan M. S., Zhang S., Fan W., Wang H., Lu D. (2007) Pax4 paired domain mediates direct protein transduction into mammalian cells. Endocrinology. 148, 5558–5565.
- Rezende L.F., Stoppiglia L.F., Souza K.L., Negro A., Langone F., Boschero A.C. (2007) Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. J. Endocrinol. 195, 157–165.
- Lee G., Jang H., Kim Y.Y., Choe S.S., Kong J., Hwang I., Park J., Im S.S., Kim J.B. (2019) SREBP1c-PAX4 axis mediates pancreatic β-cell compensatory responses upon metabolic stress. Diabetes. 68, 81–94.
- Mellado-Gil J.M., Jiménez-Moreno C.M., Martin-Montalvo A., Alvarez-Mercado A.I., Fuente-Martin E., Cobo-Vuilleumier N., Lorenzo P.I., Bru-Tari E, Herrera-Gómez Ide G., López-Noriega L., Pérez-Florido J., Santoyo-López J., Spyrantis A., Meda P., Boehm B.O., Quesada I., Gauthier B.R. (2016) PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia. 59, 755–765.
- Lorenzo P.I., Fuente-Martín E., Brun T., Cobo-Vuilleumier N., Jimenez-Moreno C.M., Herrera Gomez I.G., López Noriega L., Mellado-Gil J.M., Martin-Montalvo A., Soria B., Gauthier B.R. (2015) PAX4 defines an expandable β-сell subpopulation in the adult рancreatic islet. Sci. Rep. 5, 1–14.
- Dorrell C., Schug J., Canaday P.S., Russ H.A., Tarlow B.D., Grompe M. T., Grompe M. (2016) Human islets contain four distinct subtypes of β-cells. Nat. Commun. 7, 1–9.
- Aguayo-Mazzucato C., van Haaren M., Mruk M., Lee T.B. Jr., Crawford C., Hollister-Lock J., Sullivan B.A., Johnson J.W., Ebrahimi A., Dreyfuss J.M., Van Deursen J., Weir G.C., Bonner-Weir S. (2017) Β-Cell aging markers have heterogeneous distribution and are induced by insulin resistance. Cell. Metab. 25, 898–910.
- Katsuta H., Aguayo-Mazzucato C., Katsuta R., Akashi T., Hollister-Lock J., Sharma A.J., Bonner-Weir S., Weir G.C. (2012) Subpopulations of GFP-marked mouse pancreatic β-cells differ in size, granularity, and insulin secretion. Endocrinology. 153, 5180–5187.
- Thorel F., Népote V., Avril I., Kohno K., Desgraz R., Chera S., Herrera P.L. (2010) Convertion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature. 464, 1149–1154.
- Zhang Y., Fava G.E., Wang H., Mauvais-Jarvis F., Fonseca V.A., Wu H. (2016) PAX4 gene transfer induces α- to β-cell phenotypic convertion and confers therapeutic benefits for diabetes treatment. Mol. Ther. 24, 251–260.
- Chera S., Baronnier D., Ghila L., Cigliola V., Jensen J.N., Gu G., Herrera P.L. (2014) Diabetes recovery by age-dependent convertion of pancreatic δ-cells into insulin producers. Nature. 514, 503–507.
- Druelle N., Vieira A., Shabro A., Courtney M., Mondin M., Rekima S., Collombat P. (2017) Ectopic expression of PAX4 in pancreatic δ cells results in β-like cell neogenesis. J. Cell. Biol. 216, 4299–4311.
- Lima M.J., Muir K.R., Docherty H.M., McGowan N.W., Forbes S., Heremans Y., Heimberg H., Casey J., Docherty K. (2016) Generation of functional beta-like cells from human exocrine pancreas. PLoS One. 11, e0156204.
- Garrido-Utrilla A., Ayachi C., Friano M.E., Atlija J., Balaji S., Napolitano T., Silvano S., Druelle N., Collombat P. (2022) Conversion of gastrointestinal somatostatin-expressing D cells into insulin-producing beta-like cells upon Pax4 misexpression. Front. Endocrinol. (Lausanne). 13, 861922.
- Lorenzo P.I., Cobo-Vuilleumier N., Gauthier B.R. (2018) Therapeutic potential of pancreatic PAX4-regulated pathways in treating diabetes mellitus. Curr. Opin. Pharmacol. 43, 1–10.
- Xu L., Xu C., Zhou S., Liu X., Wang J., Liu X., Tang X. (2017) PAX4 promotes PDX1-induced differentiation of mesenchymal stem cells into insulin-secreting cells. Am. J. Transl. Res. 9, 874–886.
- Açiksari A., Duruksu G., Karaöz E. (2017) Improved insulin-secreting properties of pancreatic islet mesenchymal stem cells by constitutive expression of Pax4 and MafA. Turk. J. Biol. 41, 979–991.
- Kalo E., Read S., Ahlenstiel G. (2022) Reprogramming – evolving path to functional surrogate β-сells. Cells. 11, 2813.
Дополнительные файлы
