Обратные задачи для уравнения колебаний консольной балки по отысканию источника
- Авторы: Фадеева О.В.1
 - 
							Учреждения: 
							
- Самарский государственный технический университет
 
 - Выпуск: Том 87, № 4 (2023)
 - Страницы: 661-669
 - Раздел: Статьи
 - URL: https://edgccjournal.org/0032-8235/article/view/675116
 - DOI: https://doi.org/10.31857/S0032823523040057
 - EDN: https://elibrary.ru/MMTCAD
 - ID: 675116
 
Цитировать
Полный текст
Аннотация
Для уравнения колебания балки изучаются обратные задачи по отысканию правой части, т.е. источника колебаний. Решения задач методами спектрального анализа и интегральных уравнений Вольтерра построены в явном виде как суммы рядов и доказаны соответствующие теоремы единственности и существования. При обосновании существования решения обратной задачи по определению сомножителя правой части, зависящей от пространственной координаты, возникает проблема малых знаменателей. В связи с этим установлены оценки знаменателей, гарантирующие их отделенность от нуля, с указанием соответствующей асимптотики. На основании этих оценок обоснована сходимость рядов в классе регулярных решений уравнения колебаний балки.
Об авторах
О. В. Фадеева
Самарский государственный технический университет
							Автор, ответственный за переписку.
							Email: faoks@yandex.ru
				                					                																			                												                								Россия, Самара						
Список литературы
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1966. 724 с.
 - Рэлей Л. Теория звука. Т. 1. М.: Гостехиздат, 1955. 503 с.
 - Тимошенко С.П. Колебания в инженерном деле. М.: Физматлит, 1967. 444 с.
 - Филиппов А.П. Колебания деформируемых систем М.: Машиностроение, 1970. 736 с.
 - Доннел Л.Г. Балки, пластины и оболочки. М.: Наука, 1982. 568 с.
 - Крылов А.Н. Вибрация судов. М.: Гостехиздат, 2012. 447 с.
 - Сабитов К.Б., Фадеева О.В. Начально-граничная задача для уравнения вынужденных колебаний консольной балки // Вестн. Самар. Гос. тех. ун-та. Сер.: Физ.-мат. науки. 2021. Т. 25. № 1. С. 51–66.
 - Романов В.Г. Обратные задачи уравнений математической физики. М.: Наука, 1984. 264 с.
 - Денисов А.М. Введение в теорию обратных задач. М.: МГУ, 1994. 208 с.
 - Prilepko A.I., Orlovsky D.G., Vasin I.A. Method for Solving Inverse Problems in Mathematical Physics. New York; Basel: 1999. 709 c.
 - Кабанихин С.И. Обратные и некорректные задачи. Новосибирск, Сиб. научн. изд-во, 2009. 457 с.
 - Сабитов К.Б. Обратные задачи для уравнения колебаний балки по определению правой части и начальных условий // Дифф. уравн. 2020. Т. 56. № 6. С. 773–785.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



