“Superlight” Propagation of Electromagnetic Pulses

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the calculation of the Fourier integral directly and without simplifying assumptions, the analysis of the process of passage of terahertz pulses with a hat-shaped envelope and Van Bladel envelope through a layer of a resonant-absorbing medium described by the Drude–Lorentz model is carried out. It is
shown that until the end of the time interval prescribed by the Maxwell equations, there is no radiation at the exit from the layer, i.e., the Fourier integral does not contain the effect of “superluminal” propagation of an
electromagnetic pulse through a resonantly absorbing medium. An alternative interpretation of the shift to the beginning of the pulse of the envelope maximum emerging from the radiation layer at small optical depths
(~1) of the layer at the resonant frequency of the medium is proposed.

Sobre autores

G. Strelkov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Email: strelkov@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

Yu. Khudyshev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino Branch

Autor responsável pela correspondência
Email: strelkov@ms.ire.rssi.ru
Fryazino, Moscow oblast, 141190 Russia

Bibliografia

  1. Peatross J., Glasgow S.A., Ware M. // Phys. Rev. Lett. 2000. V. 84. № 11. P. 2370.
  2. Agarwal G.S., Dey T.N., Menon S. // Phys. Rev. A. 2001. V. 64. № 5. P. 053809.
  3. Бухман Н.С. // ЖТФ. 2002. Т. 72. № 1. С. 136.
  4. Акульшин А.М., Чиммино А., Опат Дж.И. // Квантов. электроника. 2002. Т. 32. № 7. С. 567.
  5. Macke B., Segard B. // Eur. Phys. J. 2003. D23. P. 125.
  6. Stenner M.D., Gauthier D.J., Neifeld M.A. // Nature. 2003. V. 425. № 6959. P. 695.
  7. Tanaka H., Niwa H., Hayami K. et al. // Phys. Rev. A. 2003. V. 68. № 5. P. 053801.
  8. Talukder A.I., Tomita M. // Phys. Rev. A. 2005. V. 72. № 5. P. 051802.
  9. Guo W. // Phys. Rev. E. 2006. V. 73. № 1. P. 016605.
  10. Boyd R.W., Narum P. // J. Mod. Optics. 2007. V. 54. № 16–17. P. 2403.
  11. Bianucci P., Fietz C.R., Robertson J.W. et al. // Phys. Rev. A. 2008. V. 77. № 5. P. 053816.
  12. Shakhmuratov R.N., Odeurs J. // Phys. Rev. A. 2008. V. 77. № 3. P. 033854.
  13. Boyd R.W. // J. Mod. Optics. 2009. V. 56. № 18–19. P. 1908.
  14. Boyd R.W., Gauthier D.J. // Science. 2009. V. 326. P. 1074.
  15. Withayachumnankul W., Fischer B.M., Ferguson B. et al. // Proc. IEEE. 2010. V. 98. № 10. P. 1775.
  16. Akulshin A.M., McLean R.J. // J. Optics. 2010. V. 12. P. 104001.
  17. Бyxмaн H.C. // PЭ. 2021. T. 66. № 3. C. 209.
  18. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979. С. 90.
  19. Стрелков Г.М., Худышев Ю.С. // Докл. VII Всерос. микроволн. конф. Москва. 25–27 нояб. 2020. М.: ИРЭ им. В.А. Котельникова РАН, 2020. С. 315.
  20. Тюхтин А.В. // ЖТФ. 2005. Т. 75. Вып. 8. С. 121.
  21. Архипов Р.М., Архипов М.В., Толмачев Ю.А. // Оптика и спектроскопия. 2012. Т. 112. № 2. С. 268.
  22. Памятных Е., Туров Е.А. Основы электродинамики материальных сред в переменных и неоднородных полях. М.: Физматлит, 2000.
  23. Жевакин С.А., Наумов А.П. // Изв. вузов. Радиофизика. 1963. Т. 6. № 4. С. 674.
  24. Левич В.Г. Курс теоретической физики. М.: Наука, 1969. Т. 1. С. 111.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (11KB)
3.

Baixar (172KB)
4.

Baixar (201KB)
5.

Baixar (377KB)
6.

Baixar (455KB)
7.

Baixar (50KB)

Declaração de direitos autorais © Г.М. Стрелков, Ю.С. Худышев, 2023