Influence of fourth-order anisotropy on precession of the magnetization equilibrium position under the conditions of orientational transition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The precession of the magnetization equilibrium position in a medium with uniaxial anisotropy of the second and fourth orders is considered. In the geometry of the normally magnetized ferrite plate the conditions of orientational transition necessary for excitation of precession of equilibrium are found. Time dependences of the fluctuations of the transverse components of the magnetization are obtained. Precession portraits for the cases of anisotropy of the second and fourth orders are constructed. It is shown that both of them have the form of a large ring filled along the formation by small rings. It is shown that at sufficiently large magnitude of the fourth-order anisotropy in the distribution of small rings, thickenings corresponding to fractures of the time dependences of the transverse magnetization components are observed.

Texto integral

Acesso é fechado

Sobre autores

V. Vlasov

Syktyvkar State University named after P. Sorokin

Email: vshcheg@cplire.ru
Rússia, Oktyabrsky Prospekt, 55, Syktyvkar, 167001

V. Shavrov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Email: vshcheg@cplire.ru
Rússia, Mokhovaya Str., 11, Build. 7, Moscow, 125009

V. Shcheglov

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vshcheg@cplire.ru
Rússia, Mokhovaya Str., 11, Build. 7, Moscow, 125009

Bibliografia

  1. Гуревич А. Г. Ферриты на сверхвысоких частотах. М.: Физматгиз, 1960.
  2. Гуревич А. Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973.
  3. Гуревич А. Г., Мелков Г. А. Магнитные колебания и волны. М.: Физматлит, 1994.
  4. Шавров В. Г., Щеглов В. И. Магнитостатические волны в неоднородных полях. М.: Физматлит, 2016.
  5. Шавров В. Г., Щеглов В. И. Магнитостатические и электромагнитные волны в сложных структурах. М.: Физматлит, 2017.
  6. Моносов Я. А. Нелинейный ферромагнитный резонанс. М.: Наука, 1971.
  7. Львов В. С. Нелинейные спиновые волны. М.: Наука, 1987.
  8. Захаров В. Е., Львов В. С., Старобинец С. С. // Успехи физ. наук. 1974. Т. 114. № 4. С. 609.
  9. Зильберман П. Е., Темирязев А. Г., Тихомирова М. П. // ЖЭТФ. 1995. Т. 108. № 1. С. 281.
  10. Гуляев Ю. В., Зильберман П. Е., Темирязев А. Г., Тихомирова М. П. // ФТТ. 2000. Т. 42. № 6. С. 1062.
  11. Шавров В. Г., Щеглов В. И. Динамика намагниченности в условиях изменения ее ориентации. М.: Физматлит, 2019.
  12. Шавров В. Г., Щеглов В. И. Ферромагнитный резонанс в условиях ориентационного перехода. М.: Физматлит, 2018.
  13. Локк Э. Г. Магнитостатические волны в ферритовых пленках и структурах на их основе. Дисс. … д-ра физ.-мат. наук. М.: ИРЭ РАН, 2007. 280 с.
  14. Вашковский А. В., Локк Э. Г., Щеглов В. И. // ЖЭТФ. 1998. Т. 114. № 4. С. 1430.
  15. Вашковский А. В., Локк Э. Г., Щеглов В. И. // ФТТ. 1999. Т. 41. № 11. С. 2034.
  16. Власов В. С., Шавров В. Г., Щеглов В. И. // Журн. радиоэлектроники. 2021. № 3. http: doi.org/10.30898/1684–1719.2021.3.2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diagram of the geometry of precession of the equilibrium position of magnetization.

Baixar (104KB)
3. Fig. 2. Dependence of the anisotropy energy density of different orders on the normalized transverse components of magnetization (scale is arbitrary): 1 – fourth order; 2 – second order; 3 – sum of the fourth and second orders.

Baixar (81KB)
4. Fig. 3. Oscillations of magnetization components mx (a) and my (b) over time for different types of anisotropy: curve 1 – K2 ≠ 0, K4 ≠ 0; curve 2 – K2 = 0, K4 = 0.

Baixar (293KB)
5. Fig. 4. Precession portraits of magnetization oscillations for different types of anisotropy: curve 1 – K2 ≠ 0, K4 ≠ 0; curve 2 – K2 = 0, K4 = 0.

Baixar (182KB)
6. Fig. 5. Dependences of the anisotropy energy density of both orders on the normalized transverse component of magnetization mx for different values ​​of the constants: curve 1 – K2 = 900 erg×cm–3, K4 = –1000 erg×cm–3; curve 2 – K2 = 900 erg×cm–3, K4 = –15000 erg×cm–3.

Baixar (73KB)
7. Fig. 6. Oscillations of the magnetization components mx (a) and my (b) over time for different values ​​of the fourth-order anisotropy constant: –1000 (1) and –15000 erg×cm–3 (2); for clarity, the total sweep time has been doubled compared to Fig. 3.

Baixar (293KB)
8. Fig. 7. Precession portrait of magnetization oscillations for small (a) and large (b) values ​​of the fourth-order anisotropy constant: K4 = –1000 (a) and –15000 erg×cm–3 (b).

Baixar (405KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024