Characteristics of the generative sphere of Danae racemosa (Asparagaceae) under introduction in the Crimea peninsula

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The article presents the analysis of the genesis of the flower reproductive structures of Danae racemosa (L.) Moench (Asparagaceae) – an evergreen shrub introduced to the Southern coast of Crimea. The natural range of the species covers Turkey, Syria, Transcaucasia and Iran. The inflorescences of D. racemosa contain flowers of three types: staminate, bisexual and pistillate. Cytoembryological analysis of the development of reproductive structures of D. racemose has shown that the main features of the male generative sphere of D. racemosa are the centripetal type of microsporangium wall formation; secretory tapetum; a successive type of microsporogenesis, microspore tetrads are isobilateral or tetrahedral. The wall of the mature anther has a layer of flattened epidermal cells and endothecium with fibrous thickenings. Pollen grains in D. racemosa are tricellular. The female generative sphere of D. racemosa is represented by anatropic, bitegmic, medionucellate ovules. Megasporogenesis takes place with the formation of a linear tetrad of megaspores. The embryo sac develops by Polygonum-type. In all D. racemosa flowers, regardless of the type, the rudiments of anthers and ovules are formed in the early stages. Fully functional male and female generative structures (anthers and ovules) develop in bisexual flowers. Morphologically normal pollen grains (about 70%) predominate in the pollen of such flowers. In staminate flowers, the female generative sphere undergoes reduction. Ovules degenerate at megasporocyte stage. In the pistillate flowers, anthers abortion occurs at microsporocyte stage, however, the anthers remain, and in some cases, a small amount of pollen is formed in them.

全文:

受限制的访问

作者简介

T. Kuzmina

Nikita Botanical Garden – National Scientific center RAS

编辑信件的主要联系方式.
Email: tnkuzmina@rambler.ru
俄罗斯联邦, Yalta

参考

  1. WFO (World Flora Online). 2025. Asparagaceae Juss. http://www.worldfloraonline.org/taxon/wfo-7000000050 (Accessed 29.11.2024)
  2. Bussmann R. W., Batsatsashvili K., Kikvidze Z., Paniagua-Zambrana N. Y., Khutsishvili M., Maisaia I., Sikharulidze Sh., Tchelidze D. 2020. Danae racemosa (L.) Moench, Ruscus hyrcanus Woron., Ruscus hypophyllum L. Asparagaceae. — In: Ethnobotany of the Mountain Regions of Far Eastern Europe. Springer Nature. https://doi.org/10.1007/978-3-319-77088-8_120-2
  3. Akhani H. 2006. Flora Iranica: Facts and figures and a list of publications by K. H. Rechinger on Iran and adjacent areas. — Rostaniha. 7(S2). 19–61. https://rostaniha.areeo.ac.ir/article_105943.html
  4. Masoudi M., Maivan H. Z., Mehrabian A. 2022. Abundance and occurrence of Danae racemosa growing in Hyrcanian forest understory in relation to static and dynamic environmental variables. — J. Wildlife Biodivers. 6(2): 1–21. https://wildlife-biodiversity.com/index.php/jwb/article/view/178
  5. Koba V. P., Gerasimchuk V. N., Papel’bu V. V., Sakhno T. M. 2018. [Annotated catalog of the dendrological collection of the Arboretum of the Nikita Botanical Gardens]. Simferopol. 304 p. https://www.elibrary.ru/mhoxkx (In Russian)
  6. Nasudari A. A., Oganesyan E. T., Kompantsev V. A., Kerimov Yu. B. 1972. Polyphenolic compounds of Danae racemosa. — Chem. Nat. Compd. 8(5): 659. https://doi.org/10.1007/BF00564351
  7. Shahreari Sh., Khaki A., Ahmadi-Ashtiani H. R., Rezazadeh Sh., Hajiaghaei R. 2010. Effects of Danae racemosa on testostrone hormone in experimental diabetic rats. — J. Med. Plant. 9(35): 114–119. https://jmp.ir/article-1-275-en.html
  8. Fathiazad F., Hamedeyazdan S. 2015. Phytochemical analysis of Danae racemosa L. Moench leaves. — Pharm. Sci. 20(4): 135–140. https://ps.tbzmed.ac.ir/Article/PHARM_667_20140628085701
  9. Tarakhovsky Y. S., Kim Y. A., Abdrasilov B. S., Muzafarov E. N. 2013. [Flavonoids: biochemistry, biophysics, medicine]. Pushchino. 310 p. (In Russian)
  10. Maleki-Dizaji N., Fatemeh F., Garjani A. 2008. Antinociceрtive properties of extracts and two flavonoids isolated from leaves of Danae racemosa. — Arch. Pharm. Res. 30(12): 1536–1542. https://doi.org/10.1007/BF02977322
  11. Shevchenko S. V., Plugatar Yu. V. 2019. Studies of reproductive biology of seed plants in the Nikita Botanical Gardens. — Works of the State Nikit. Botan. Gard. 149: 177–198. https://doi.org/10.36305/0201-7997-2019-149-177-198 (In Russian)
  12. Plugatar Yu. V., Koba V. P., Gerasimchuk V. N., Papelbu V. V. 2015. Dendrologic Collection of Arboretum of Nikitsky Botanical Gardens: Current State and Trends of Development. — Achievements of Science and Technology of AIC. 29(12): 50–54. http://www.agroapk.ru/70-archive/12-2015/1192-2015-12-15-ru (In Russian)
  13. Kordyum E. L., Gluschenko G. I. 1976. [Cytoembryological aspects of gender in angiosperms]. Kiev. 199 p. (In Russian)
  14. [Comparative embryology of flowering plants. Monocotyledones. Butomaceae–Lemnaceae]. 1990. Leningrad. 332 p. (In Russian)
  15. Rudall P. J., Campbell G. 1999. Flower and pollen structure of Ruscaceae in relation to Aspidistreae and other Convallariaceae. — Flora. 194(2): 201–214. https://doi.org/10.1016/S0367-2530(17)30908-8
  16. Kamelina O. P. 2011. Systematic embryology of flowering plants. Monocotyledones. Barnaul. 192 p. (In Russian)
  17. Zhinkina N. A., Voronova O. N. 2000. On staining technique of embryological slides. — Botanicheskii Zhurnal. 85(6): 168–171. (In Russian)
  18. Teryokhin E. S., Batygina T. B., Shamrov I. I. 1993. The classification of microsporangium wall types in angiosperms. Terminology and conceptions. — Botanicheskii Zhurnal. 78(6): 16–24. (In Russian)
  19. Shamrov I. I. 1999. The ovule as the base of the seed reproduction in flowering plants: classification of the structures. — Botanicheskii Zhurnal. 84(10): 3–35. (In Russian)
  20. Shamrov I. I. 2017. Morphological types of ovules in flowering plans. — Botanicheskii Zhurnal. 102(2): 129–146. https://doi.org/10.1134/S0006813617020016 (In Russian)
  21. Shamrov I. I., Anisimova G. M., Babro A. A. 2019. Formation of anther microsporangium wall, and typification of tapetum in angiosperms. — Botanicheskii Zhurnal. 104(7): 1001–1032. https://doi.org/10.1134/S0006813619070093 (In Russian)
  22. Kruglova N. N. 2023. System approach to morphogenesis of anthers of flowering plants. — Plant Biology and Horticulture: theory, innovation. 1(166): 7–15. https://elibrary.ru/gzukqp (In Russian)
  23. Shevchenko S. V., Ruguzov I. A., Efremova L. M. 1986. [Technique of methyl green-pyronin staining of permanent preparations]. — Bull. of the Nikita Botanical Gardens. 60: 99–101. (In Russian)
  24. The сonfidence Interval of a Proportion. http://vassarstats.net/prop1.html (Accessed 29.11.2024)
  25. Galyshko R. V. 1988. [Rhythms of the intrabud development of Mediterranean woody species]. — Proceedings of the State Nikitsky Botanical Gardens. 106: 46–54. (In Russian)
  26. Kuzmina T. N. 2024. Flower morphology and sexual status of Danae racemosa (L.) Moench (Asparagaceae). — Subtropical and Ornamental Horticulture. 88: 54–65. https://elibrary.ru/iklhbn (In Russian)
  27. Song Y.-Y., Zhao Y.-Y., Liu J.-X. 2018. Embryology of Polygonatum (Asparagaceae) and its systematic significance. — Phytotaxa. 350(3): 235–246. https://doi.org/10.11646/phytotaxa.350.3.3
  28. Ahmad N. M., Martin P. M., Vella J. M. 2008. Embryology of the dioecious Australian endemic Lomandra longifolia (Lomandraceae). — Aust. J. Bot. 56(8): 651–665. https://doi.org/10.1071/BT07222
  29. Rudall P. J. 1999. Flower Anatomy and Systematics of Comospermum (Asparagales). — Syst. Geogr. Pl. 68(1/2):195–202. https://doi.org/10.2307/3668600
  30. Komar G. A. 1983. Morphology of Liliaceae ovules. — Botanicheskii Zhurnal. 68(4): 417–427. (In Russian)
  31. Caporali E., Testolin R., Pierce S., Spada A. 2019. Sex change in kiwifruit (Actinidia chinensis Planch.): a developmental framework for the bisexual to unisexual floral transition. — Plant Reprod. 32(3): 323–330. https://doi.org/10.1007/s00497-019-00373-w
  32. Caporali E., Carboni A., Galli M. G., Rossi G., Spada A., Marziani Longo G. P. 1994. Development of male and female flower in Asparagus officinalis. Search for point of transition from hermaphroditic to unisexual developmental pathway. — Sex. Plant Reprod. 7(4): 239–249. https://doi.org/10.1007/BF00232743
  33. Ide M., Masuda K., Tsugama D., Fujino K. 2019. Death of female flower microsporocytes progresses independently of meiosis-like process and can be accelerated by specific transcripts in Asparagus officinalis. — Sci. Rep. 9: 2703. https://doi.org/10.1038/s41598-019-39125-1
  34. Reznikova S. A. 1984. [Cytology and physiology of the developing anther]. Moscow. 272 p. (In Russian)
  35. Chawla M., Verma V., Kapoor M., Kapoor S. 2017. A novel application of periodic acid–Schiff (PAS) staining and fluorescence imaging for analysing tapetum and microspore development. — Histochem. Cell Biol. 147(1): 103–110. https://doi.org/10.1007/s00418-016-1481-0
  36. Suzuki K., Takeda H., Tsukaguchi T., Egawa Y. 2001. Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. — Sex. Plant Reprod. 13(6): 293–299. https://doi.org/10.1007/s004970100071
  37. Oshino T., Abiko M., Saito R., Ichiishi E., Endo M., Kawagishi-Kobayashi M., Higashitani A. 2007. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. — Molecular Genetics and Genomics. 278(1): 31–42. https://doi.org/10.1007/s00438-007-0229-x
  38. [Experimental cytoembryology of plants]. 1971. Kishinev. 145 p. (In Russian)
  39. Nugent J. M., Byrne T., McCormack G., Quiwa M., Stafford E. 2019. Progressive programmed cell death inwards across the anther wall in male sterile flowers of the gynodioecious plant Plantago lanceolata. — Planta. 249(3): 913–923. https://doi.org/10.1007/s00425-018-3055-y
  40. Yang X., Liang W., Chen M., Zhang D., Zhao X., Shi J. 2017. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. — Planta 246(1): 105–122. https://doi.org/10.1007/s00425-017-2691-y
  41. Gothandam K. M., Kim E. S., Chung Y. Y. 2007. Ultrastructural study of rice tapetum under low-temperature stress. — J. Plant Biol. 50(4): 396–402. https://doi.org/10.1007/BF03030674
  42. Vijayaraghavan M. R., Ratnaparkhi Sh. 1979. Histological dynamics of anther tapetum in Heuchera micrantha. — Proc. Indian Acad. Sci. 88B-II(4): 309–316. https://www.ias.ac.in/public/Volumes/plnt/088/04/0309-0316.pdf
  43. Du K., Xiao Y., Liu Q., Wu X., Jiang J., Wu J., Fang Y., Xiang Y., Wang Y. 2019. Abnormal tapetum development and energy metabolism associated with sterility in SaNa-1A CMS of Brassica napus L. — Plant Cell Rep. 38(5): 545–558. https://doi.org/10.1007/s00299-019-02385-2
  44. Avalos A. A., Zini L. M., Ferrucci M. S., Lattar E. C. 2019. Anther and gynoecium structure and development of male and female gametophytes of Koelreuteria elegans subsp. formosana (Sapindaceae): Phylogenetic implications. — Flora. 255: 98–109. https://doi.org/10.1016/j.flora.2019.04.003
  45. Oryol L. I., Kazachkovskaya E. B. 1991. The embryoligial heterogeneity as the cause of reduction in seed production in Medicago sativa (Fabaceae). — Botanicheskii Zhurnal. 76(2): 161–172. (In Russian)

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Flowers of Danae racemosa (longitudinal section): 1 – staminate flower; 2 – bisexual (mesostylous) flower; 3 – pistillate (macrostylous) flower (an – anthers; st – stigma of pistil; ov – ovary). Scale bar – 1 mm.

下载 (108KB)
3. Fig. 2. Cross sections of microsporangium of Danae racemosa in the early stages of development: 1 – anther primordium at the stage of archesporial cells; 2–6 – differentiation of cell layers of the microsporangium wall; 7 – the formed anther; 8 – degeneration of the anther of the pistillate (macrostylous) flower (ac – archesporial cell; e – еpidermis; en – endothecium; ml – middle layer; ppc – primary parietal cells; sc – sporogenic cells; spc – secondary parietal layer; t – tapetum). Scale bar: 1–7 – 10 μm; 8 – 20 μm.

下载 (1MB)
4. Fig. 3. Cross sections of the microsporangium of Danae racemosa at the stages of meiotic (1, 2) and postmeiotic development (3–7) and mature pollen grains (8): 1–3 – microsporogenesis; 4 – the stage of young microspores; 5 – the vacuolized microspores; 6 – formation of two-cell pollen grains; 7 – the wall of mature microsporangia and three-cell pollen grains (8) (e – еpiderma; en – endotecium; m – microspores; ml – middle layer; msc – microsporocytes; pg – pollen grains; t – tapetum; tm ― tetrad of microspores). Scale bar – 10 μm.

下载 (1MB)
5. Fig. 4. Ovules of Danae racemosa in the early stages of development: 1–3 – primordial ovule at the stage of the archesporial cell; 4 – degeneration of the ovule; 5, 6 ovules at the stage of megasporocyte and differentiation of integuments (ac – archesporial cell; ii – internal integument; iii – initial of the internal integument; ioi – initial of the outer integument; ms – megasporocyte, n – nucellus; o i – outer integument). Scale bar – 10 μm.

下载 (815KB)
6. Fig. 5. Ovules of Danae racemosa during megasporogenesis (1, 2), mature embryo sac (3–5) and longitudinal section of the degenerated ovary of the staminate flower (6) (at – antipodes, ch – chalase, cln – cells of the nucellus lateral zone, ea – ovular apparatus, es – embryo sac, f – funiculus, ii – inner integument, oi – outer integument, mgs – megaspore, n – nucellus, pn – polar nucleus). Scale bar: 1–4 – 10 μm; 5 – 20 μm; 6 – 50 μm.

下载 (839KB)

版权所有 © Russian Academy of Sciences, 2025