Physical and chemical properties and activity of Mn/γ-Al2O3 catalyst during propane to olefinic hydrocarbon conversion
- 作者: Vosmerikov A.A.1, Stepanov A.A.1, Vosmerikova L.N.1, Gerasimov E.Y.2, Vosmerikov A.V.1
-
隶属关系:
- Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Federal Research Center, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- 期: 卷 99, 编号 2 (2025)
- 页面: 251-261
- 栏目: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- ##submission.dateSubmitted##: 19.06.2025
- ##submission.datePublished##: 20.05.2025
- URL: https://edgccjournal.org/0044-4537/article/view/685274
- DOI: https://doi.org/10.31857/S0044453725020102
- EDN: https://elibrary.ru/DDSZHM
- ID: 685274
如何引用文章
详细
The physicochemical and catalytic properties of manganese-modified γ-Al2O3 are described. Using the method of thermoprogrammed ammonia desorption, data on the acid characteristics of Mn-containing catalysts are obtained, and they are found to differ from each other by the distribution and ratio of acid centers of various types. The morphology and structure of particles of Mn/γ-Al2O3 catalysts are studied by high-resolution transmission electron microscopy, and modification of γ-Al2O3 with manganese is shown to change them in no significant way. It is found that the largest amount of olefinic hydrocarbons is formed in the process of propane conversion at 650°C on γ-Al2O3 containing 4.0% manganese and makes up 37.8% at conversion of 58% while the selectivity of formation of lower olefins reaches 64.2%. The amount and nature of coke deposits formed on the surface of Mn-containing catalysts during the propane dehydrogenation reaction are determined by the method of differential thermal analysis. It is shown that in the course of the reaction carbon nanofibers are formed near the catalyst surface and layers of graphite-like carbon on the surface of Al2O3 particles.
全文:

作者简介
A. Vosmerikov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: antonvosmerikov@gmail.com
俄罗斯联邦, Tomsk, 634055
A. Stepanov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
俄罗斯联邦, Tomsk, 634055
L. Vosmerikova
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
俄罗斯联邦, Tomsk, 634055
E. Gerasimov
Federal Research Center, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
俄罗斯联邦, Novosibirsk, 630090
A. Vosmerikov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
俄罗斯联邦, Tomsk, 634055
参考
- Левин В.О., Потехин В.М., Кудимова М.В. // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2017. Т. 6. С. 28.
- Погосян Н.М., Погосян М.Д., Шаповалова О.В. и др. // Нефтегазохимия. 2016. Т. 2. С. 38.
- Волкова А.В. Рынок базовых продуктов нефтехимии: олефины и ароматические углеводороды. М.: Национальный исследовательский университет Высшая школа экономики, 2019. 70 с.
- Xieqing W., Chaogang X., Zaiting L., Genquan Z. // Practical Advances in Petroleum Processing. 2006. P. 1063.
- Yoshimura Y., Kijima N., Hayakawa T. et al. // Catal. Surv. Jpn. 2000. V. 4. P. 157.
- Akah A., Williams J., Ghrami M. // Catalysis Surveys from Asia. 2023. V. 4. P. 265.
- Fakhroleslam M., Sadrameli S.M. // Fuel. 2019. V. 252. P. 553.
- Жоров Ю.М. // Нефтехимия. 1984. Т. 24. № 1. С. 38.
- Мухина Т.Н., Барабанов Н.Л., Бабаш С.Е. Пиролиз углеводородного сырья. М.: Химия, 1987. 240 с.
- Черных С.П., Адельсон С.В., Мухина Т.Н. // Нефтехимия. 1991. Т. 31. С. 688.
- Chen S., Chang X., Sun G., Zhang T. et al. // Chem. Soc. Rev. 2021. V. 5. P. 3315.
- Liu S., Zhang B., Liu G. // Reaction Chemistry & Engineering. 2021. V. 6. № 1. P. 9.
- Sattler J.J., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chemical Reviews. 2014. V. 519. № 114. P. 10613.
- Бабак В.Н., Бабак Т.Б., Закиев С.Е., Холпанов Л.П. // Теорет. осн. хим. технологии. 2009. Т. 43. № 1. С. 78.
- Rodemerck U., Stoyanova M., Kondratenko E.V., Linke D. // J. Catal. 2017. V. 352. P. 256.
- Choi S.-W., Kim W.-G., So J.-S., Moore J.S. et al. // J. Catal. 2017. V. 345. P. 113.
- Chen C., Hu Z., Ren J., Zhang S. et al. // ChemCatChem. 2019. V. 11. P. 868.
- Estes D.P., Siddiqi G., Allouche F., Kovtunov K.V. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14987.
- Галанов С.И., Галанов А.И., Смирнов М.Ю., Сидорова О.И. и др. // Изв. Томского политех. ун-та. 2005. Т. 308. № 1. С. 126.
- Цырульников П.Г. // Росс. хим. журн. 2007. Т. 51. № 4. С. 133.
- Усачев Н.Я., Харламов В.В., Казаков А.В., Беланова Е.П. и др. // Сб. матер. Научно-экспертного совета при Председателе Совета Федерации Федерального Собрания Российской Федерации. 2010. С. 126.
- Delmastro A., Gozzelino G., Mazza D. et al. // J. of the Chemical Society. Faraday Transactions. 1992. V. 88. № 14. P. 2065.
- Kim S.-M., Lee Y.-J., Bae J.W. et al. // Applied Catalysis A: General. 2008. V. 348. № 1. P. 113.
- Morterra C., Magnacca G.A. // Catalysis Today. 1996. V. 27. № 3–4. P. 497.
补充文件
