Оптимизация управления и параметров в системах с фазовыми ограничениями
- Авторы: Тятюшкин А.И.1
-
Учреждения:
- Институт динамики систем и теории управления им. В.М. Матросова СО РАН
- Выпуск: Том 63, № 6 (2023)
- Страницы: 950-961
- Раздел: ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ
- URL: https://edgccjournal.org/0044-4669/article/view/664834
- DOI: https://doi.org/10.31857/S0044466923060194
- EDN: https://elibrary.ru/TRPXCS
- ID: 664834
Цитировать
Аннотация
Для задачи оптимального управления с ограничениями на фазовые координаты рассматривается итерационный метод поиска численного решения, основанный на редукции к конечномерной задаче и применении к последней алгоритма последовательной линеаризации с использованием модифицированной функции Лагранжа. Для решения линейных вспомогательных задач на итерациях метода используется метод приведенного градиента. Эффективность учета фазовых ограничений при расчете оптимального управления иллюстрируется численным решением задач из области аэродинамики и робототехники. Библ. 12. Фиг. 2.
Об авторах
А. И. Тятюшкин
Институт динамики систем и теории управленияим. В.М. Матросова СО РАН
Автор, ответственный за переписку.
Email: tjat@icc.ru
Россия, 664033, Иркутск, ул. Лермонтова, 134
Список литературы
- Габасов Р., Кириллова Ф.М. Качественная теория оптимальных процессов. М.: Наука, 1971.
- Евтушенко Ю.Г. Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982.
- Федоренко Р.П. Приближенное решение задач оптимального управления. М.: Наука, 1978.
- Габасов Р., Кириллова Ф.М., Тятюшкин А.И. Конструктивные методы оптимизации. Ч. 1: Линейные задачи. Минск: Университетское, 1984.
- Тятюшкин А.И. Численные методы и программные средства оптимизации управляемых систем. Новосибирск: Наука. Сиб. отделение, 1992.
- Тятюшкин А.И. Многометодная технология оптимизации управляемых систем. Новосибирск: Наука, 2006.
- Тятюшкин А.И. Параллельные вычисления в задачах оптимального управления // Сиб. журнал вы-числ. матем. 2000. Т. 3. № 2. С. 181–190.
- Тятюшкин А.И. Численные методы решения задач оптимального управления с параметрами // Ж. в-ычисл. матем. и матем. физ. 2017. Т. 57. № 10. С. 1615–1630.
- Тятюшкин А.И. Многометодная оптимизация управления в сложных прикладных задачах // Ж. в-ычисл. матем. и матем. физ. 2019. Т. 59. № 2. C. 235–246.
- Тятюшкин А.И. Многометодные алгоритмы для решения сложных задач оптимального управления // Ж. вычисл. матем. и матем. физ. 2021. Т. 61. № 2. С. 189–205.
- Тятюшкин А.И., Федунов Б.Е. Численное исследование свойств оптимального управления в одной задаче преследования // Изв. РАН. Теория и системы управления. 2005. № 3. С. 104–113.
- Тятюшкин А.И., Федунов Б.Е. Возможности защиты от атакующей ракеты задней полусферы самолета вертикальным маневром // Изв. РАН. Теория и системы управления. 2006. № 1. С. 111–125.
Дополнительные файлы
