A Uniformly Convergent Numerical Method for Singularly Perturbed Semilinear Integro-Differential Equations with Two Integral Boundary Conditions
- 作者: Gunes B.1, Cakir M.1
-
隶属关系:
- Dept. of Math., Van Yuzuncu Yil University
- 期: 卷 63, 编号 12 (2023)
- 页面: 2157-2157
- 栏目: Ordinary differential equations
- URL: https://edgccjournal.org/0044-4669/article/view/664932
- DOI: https://doi.org/10.31857/S004446692312013X
- EDN: https://elibrary.ru/XENIHG
- ID: 664932
如何引用文章
详细
This paper purposes to present a new discrete scheme for the singularly perturbed semilinear Volterra–Fredholm integro-differential equation including two integral boundary conditions. Initially, some analytical properties of the solution are given. Then, using the composite numerical integration formulas and implicit difference rules, the finite difference scheme is established on a uniform mesh. Error approximations for the approximate solution and stability bounds are investigated in the discrete maximum norm. Finally, a numerical example is solved to show -uniform convergence of the suggested difference scheme.
作者简介
B. Gunes
Dept. of Math., Van Yuzuncu Yil University
Email: baranselgunes23@gmail.com
Turkey, Van
M. Cakir
Dept. of Math., Van Yuzuncu Yil University
编辑信件的主要联系方式.
Email: cakirmusa@hotmail.com
Turkey, Van
参考
补充文件
