Hybrid antimicrobial coating based on conjugate of hyaluronic acid with peptide LL-37 for PEO-modified titanium implants
- Autores: Parfenova L.V.1, Galimshina Z.R.1, Gil’fanova G.U.1, Alibaeva E.I.1, Pashkova T.M.2, Kartashova O.L.2, Farrakhov R.G.3, Aubakirova V.R.3, Parfenov E.V.3
-
Afiliações:
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
- Ufa University of Science and Technology
- Edição: Volume 50, Nº 2 (2024)
- Páginas: 101-110
- Seção: Articles
- URL: https://edgccjournal.org/0132-3423/article/view/670943
- DOI: https://doi.org/10.31857/S0132342324020011
- EDN: https://elibrary.ru/ONSMFD
- ID: 670943
Citar
Resumo
A conjugate of hyaluronic acid and antimicrobial peptide LL-37 was synthesized for the first time. The hybrid compound was tested as an antimicrobial organic coating for titanium samples with an inorganic sublayer obtained by plasma electrolytic oxidation (PEO) of the surface. As a result of in vitro studies, the antibacterial effect of the hybrid molecule within the inorganic PEO coating was established, which consists of a significant (p < 0.05) suppression of the ability of Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecium and Escherichia coli to form biofilms. The presented approach can be utilized for the subsequent design and development of non-fouling antimicrobial coatings to decrease the risk of infectious diseases caused by bacteria when using implants.
Palavras-chave
Texto integral

Sobre autores
L. Parfenova
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences
Autor responsável pela correspondência
Email: luda_parfenova@ipc-ras.ru
Rússia, 450075, Ufa, prosp. Oktyabrya, 141
Z. Galimshina
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences
Email: luda_parfenova@ipc-ras.ru
Rússia, 450075, Ufa, prosp. Oktyabrya, 141
G. Gil’fanova
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences
Email: luda_parfenova@ipc-ras.ru
Rússia, 450075, Ufa, prosp. Oktyabrya, 141
E. Alibaeva
Institute of Petrochemistry and Catalysis of Russian Academy of Sciences
Email: luda_parfenova@ipc-ras.ru
Rússia, 450075, Ufa, prosp. Oktyabrya, 141
T. Pashkova
Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
Email: luda_parfenova@ipc-ras.ru
Rússia, 460000, Orenburg, ul. Pionerskaya, 11
O. Kartashova
Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences
Email: luda_parfenova@ipc-ras.ru
Rússia, 460000, Orenburg, ul. Pionerskaya, 11
R. Farrakhov
Ufa University of Science and Technology
Email: luda_parfenova@ipc-ras.ru
Rússia, 450076, Ufa, ul. Zaki Validi, 32
V. Aubakirova
Ufa University of Science and Technology
Email: luda_parfenova@ipc-ras.ru
Rússia, 450076, Ufa, ul. Zaki Validi, 32
E. Parfenov
Ufa University of Science and Technology
Email: luda_parfenova@ipc-ras.ru
Rússia, 450076, Ufa, ul. Zaki Validi, 32
Bibliografia
- Elias C.N., Lima J.H.C., Valiev R., Meyers M.A. // JOM. 2008. V. 60. P. 46–49. https://doi.org/10.1007/s11837-008-0031-1
- Geetha M., Singh A.K., Asokamani R., Gogia A.K. // Prog. Mater. Sci. 2009. V. 54. P. 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004
- Chen Q., Thouas G.A. // Mater. Sci. Eng. R Rep. 2015. V. 87. P. 1–57. https://doi.org/10.1016/j.mser.2014.10.001
- Franz S., Rammelt S., Scharnweber D., Simon J.C. // Biomaterials. 2011. V. 32. P. 6692–6709. https://doi.org/10.1016/j.biomaterials.2011.05.078
- Zhou G., Groth T. // Macromol. Biosci. 2018. V. 18. P. 1800112. https://doi.org/10.1002/mabi.201800112
- Meyers S.R., Grinstaff M.W. // Chem. Rev. 2012. V. 112. P. 1615–1632. https://doi.org/10.1021/cr2000916
- Zhang B.G.X., Myers D.E., Wallace G.G., Brandt M., Choong P.F.M. // Int. J. Mol. Sci. 2014. V. 15. P. 11878. https://doi.org/10.3390/ijms150711878
- Han A., Tsoi J.K.H., Rodrigues F.P., Leprince J.G., Palin W.M. // Int. J. Adhesion Adhesives. 2016. V. 69. P. 58–71. https://doi.org/10.1016/j.ijadhadh.2016.03.022
- Chouirfa H., Bouloussa H., Migonney V., Falentin- Daudré C. // Acta Biomater. 2019. V. 83. P. 37–54. https://doi.org/10.1016/j.actbio.2018.10.036
- Rice L.B. // J. Infect. Dis. 2008. V. 197. P. 1079. https://doi.org/10.1086/533452
- Pringle N.A., Dube A., Adam R.Z., D’Souza S., Aucamp M. // Materials. 2021. V. 14. P. 3167. https://doi.org/10.3390/ma14123167
- Wang J., Dou X., Song J., Lyu Y., Zhu X., Xu L., Li W., Shan A. // Med. Res. Rev. 2019. V. 39. P. 831–859. https://doi.org/10.1002/med.21542
- Mahlapuu M., Håkansson J., Ringstad L., Björn C. // Front. Cell. Infect. Microbiol. 2016. V. 6. P. 194. https://doi.org/10.3389/fcimb.2016.00194
- Riool M., de Breij A., Drijfhout J.W., Nibbering P.H., Zaat S.A.J. // Front. Chem. 2017. V. 5. P. 63. https://doi.org/10.3389/fchem.2017.00063
- Costa B., Martínez-de-Tejada G., Gomes P.A.C., Martins M.C.L., Costa F. // Pharmaceutics. 2021. V. 13. P. 1918. https://doi.org/10.3390/pharmaceutics13111918
- Mookherjee N., Brown K.L., Bowdish D.M.E., Doria S., Falsafi R., Hokamp K., Roche F.M., Mu R., Doho G.H., Pistolic J., Powers J.-P., Bryan J., Brinkman F.S.L., Hancock R.E.W. // J. Immunol. 2006. V. 176. P. 2455–2464. https://doi.org/10.4049/jimmunol.176.4.2455
- Duplantier A.J., van Hoek M.L. // Front. Immunol. 2013. V. 4. P. 143. https://doi.org/10.3389/fimmu.2013.00143
- Neshani A., Zare H., Eidgahi M.R.A., Kakhki R.K., Safdari H., Khaledi A., Ghazvini K. // Gene Rep. 2019. V. 17. Р. 100519. https://doi.org/10.1016/j.genrep.2019.100519
- Gabriel M., Nazmi K., Veerman E.C., Amerongen A.V.N., Zentner A. // Bioconjug. Chem. 2006. V. 17. P. 548–550. https://doi.org/10.1021/bc050091v
- He Y., Mu C., Shen X., Yuan Z., Liu J., Chen W., Lin Ch., Tao B., Liu B., Cai K. // Acta Biomater. 2018. V. 80. P. 412–424. https://doi.org/10.1016/j.actbio.2018.09.036
- Parfenova L.V., Galimshina Z.R., Gil’fanova G.U., Aliba- eva E.I., Danilko K.V., Pashkova T.M., Kartashova O.L., Farrakhov R.G., Mukaeva V.R., Parfenov E.V., Nagumo- thu R., Valiev R.Z. // Surf. Interfaces. 2022. V. 28. P. 101678. https://doi.org/10.1016/j.surfin.2021.101678
- Volpi N., Schiller J., Stern R., Soltés L. // Curr. Med. Chem. 2009. V. 16. P. 1718–1745. https://doi.org/10.2174/092986709788186138
- Brubaker C.E., Messersmith Ph.B. // Langmuir. 2012. V. 28. P. 2200–2205. https://doi.org/10.1021/la300044v
- Schante C., Zuber G., Vandamme Th. // Carbohyd. Pol. 2011. V. 85. P. 469–489. https://doi.org/10.1016/j.carbpol.2011.03.019
- Bastow E.R., Byers S., Golub S.B., Clarkin C.E., Pitsilli- des A.A., Fosang A.J. // J. Cell. Mol. Life Sci. 2008. V. 65. P. 395–413. https://doi.org/10.1007/s00018-007-7360-z
- Day A.J., de la Motte C.A. // Trends Immunol. 2005. V. 26. P. 637–643. https://doi.org/10.1016/j.it.2005.09.009
- Stern R., Asari A.A., Sugahara K.N. // Eur. J. Cell. Biol. 2006. V. 85. P. 699–715. https://doi.org/10.1016/j.ejcb.2006.05.009
- Parfenov E.V., Parfenova L.V., Dyakonov G.S., Danil- ko K.V., Mukaeva V.R., Farrakhov R.G., Lukina E.S., Valiev R.Z. // Surf. Coatings Technol. 2019. V. 357. P. 669–683. https://doi.org/10.1016/j.surfcoat.2018.10.068
- Parfenova L.V., Lukina E.S., Galimshina Z.R., Gil’fano- va G.U., Mukaeva V.R., Farrakhov R.G., Danilko K.V., Dyakonov G.S., Parfenov E.V. // Molecules. 2020. V. 25. P. 229. https://doi.org/10.3390/molecules25010229
- Parfenov E.V., Parfenova L.V., Mukaeva V.R., Farrak- hov R.G., Stotskiy A., Raab A., Danilko K.V., Nagumo- thu R., Valiev R.Z. // Surf. Coatings Technol. 2020. V. 404. P. 126486. https://doi.org/10.1016/j.surfcoat.2020.126486
- Pouyani T., Prestwich G.D. // Bioconjug. Chem. 1994. V. 5. P. 339. https://doi.org/10.1021/bc00028a010
- Varghese O.P., Sun W., Hilborn J., Ossipov D.A. // J. Am. Chem. Soc. 2009. V. 131. P. 8781. https://doi.org/10.1021/ja902857b
- Vercruysse K.P., Marecak D.M., Marecek J.F., Prest- wich G.D. // Bioconjug. Chem. 1997. V. 8. P. 686–694. https://doi.org/10.1021/bc9701095
- Hu X., Neoh K.-G., Shi Z., Kang E.-T., Poh C., Wang W. // Biomaterials. 2010. V. 31. P. 8854. https://doi.org/10.1016/j.biomaterials.2010.08.006
- Chua P.H., Neoh K.G., Shi Z., Kang E.T. // Biomed. Mater. Res. A. 2008. V. 87A. P. 1061–1074. https://doi.org/10.1002/jbm.a.31854
- Lv H., Chen Z., Yang X., Cen L., Zhang X., Gao P. // J. Dent. 2014. V. 42. P. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003
- Shu X.Z., Liu Y., Luo Y., Roberts M.C., Prestwich G.D. // Biomacromolecules. 2002. V. 3. P. 1304–1311. https://doi.org/10.1021/bm025603c
- Nielsen О., Buchardt O. // Synthesis. 1991. V. 10. P. 819–821. https://doi.org/10.1055/s-1991-26579
- Gunderov D.V., Polyakov A.V., Semenova I.P., Raab G.I., Churakova A.A., Gimaltdinova E.I., Sabirov I., Segura- do J., Sitdikov V.D., Alexandrov I.V., Enikeev N.A., Vali- ev R.Z. // Mater. Sci. Eng. A. 2013. V. 562. P. 128–136. https://doi.org/10.1016/j.msea.2012.11.007
- Dyakonov G.S., Zemtsova E., Mironov S., Semenova I.P., Valiev R.Z., Semiatin S.L. // Mater. Sci. Eng. A. 2015. V. 648. P. 305–310. https://doi.org/10.1016/j.msea.2015.09.080
- O’Toole G., Kaplan H.B., Kolter R. // Ann. Rev. Microbiol. 2000. V. 54. P. 49–79. https://doi.org/10.1146/annurev.micro.54.1.49
Arquivos suplementares
