Перспективные направления регулирования сигнальных путей, участвующих в развитии сахарного диабета второго типа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

У веществ природного происхождения во множестве исследований подтверждено выраженное сродство к мишеням, ответственным за развитие патологических процессов при сахарном диабете 2-го типа. На данный момент растет интерес к биоактивным пептидам и низкомолекулярным соединениям, обнаруженным в растительных экстрактах и водорослях, морской фауне, как к высокоэффективным, безопасным и многообещающим противодиабетическим средствам. Биоактивные пептиды и фитотерапевтические препараты могут стать хорошей альтернативой имеющимся средствам для лечения сахарного диабета 2-го типа. В обзоре описаны способы снижения инсулинорезистентности и повышения чувствительности тканей к глюкозе через PTP1β (протеинтирозинфосфатазу 1β), GLP-1R (рецептор глюкагоноподобного пептида), DPP-4 (дипептидилпептидазу-4), AMPK (аденозинмонофосфат-активированную протеинкиназу) и MAPK (митоген-активированную протеинкиназу). Представлены способы регулирования ожирения и развития окислительного стресса через CCN3 (сверхэкспрессируемый ген нефробластомы), PPAR-γ (γ-рецептор, активируемый пролифератором пероксисом), NRF2 (ядерный фактор, связанный с эритроидным фактором 2), FFA (свободные жирные кислоты), FFAR (рецепторы свободных жирных кислот), 11β-HSD1 (11β-гидроксистероиддегидрогеназу). Рассмотрено регулирование гипергликемии через ингибиторы α-амилаз, регулирование накопления и расходования глюкозы через GFAT (глутаминфруктозо-6-фосфатаминотрансферазу), FOXO1 (фактор транскрипции, кодируемый геном FOXO1), GLUT4 (глюкозный транспортер 4-го типа), PGC-1α (коактиватор 1α-рецептора, активируемого пролифераторами пероксисом). В обзоре рассмотрено применение низкомолекулярных и пептидных соединений из природных источников, которые являются модуляторами мишеней и сигнальных путей in vitro и in vivo, участвующих в развитии сахарного диабета 2-го типа.

Полный текст

Доступ закрыт

Об авторах

Н. А. Бороздина

Филиал ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Пущинский филиал федерального государственного бюджетного образовательного учреждения высшего образования “Российский биотехнологический университет (РОСБИОТЕХ)”

Автор, ответственный за переписку.
Email: borozdina@bibch.ru
Россия, 142290 Пущино, просп. Науки, 6; 142290 Пущино, просп. Науки, 3

Д. В. Попкова

ФГБУН “Тихоокеанский институт биоорганической химии им. Г.Б. Елякова” ДВО РАН

Email: borozdina@bibch.ru
Россия, 690022 Владивосток, просп. 100 лет Владивостоку, 159

И. А. Дьяченко

Филиал ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Пущинский филиал федерального государственного бюджетного образовательного учреждения высшего образования “Российский биотехнологический университет (РОСБИОТЕХ)”

Email: borozdina@bibch.ru
Россия, 142290 Пущино, просп. Науки, 6; 142290 Пущино, просп. Науки, 3

Список литературы

  1. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., Paciorek C.J., Lin J.K., Farzadfar F., Khang Y.H., Stevens G.A., Rao M., Ali M.K., Riley L.M., Robinson C.A., Ezzati M. // Lancet. 2011. V. 378. P. 31–40. https://doi.org/10.1016/s0140-6736(11)60679-x
  2. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. // Diabetes Res. Clin. Pract. 2018. V. 138. P. 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
  3. Artasensi A., Pedretti A., Vistoli G., Fumagalli L. // Molecules. 2020. V. 25. P. 1987. https://doi.org/10.3390/molecules25081987
  4. Moller D.E. // Cell Metab. 2012. V. 15. P. 19–24. https://doi.org/10.1016/j.cmet.2011.10.012
  5. Maruthur N.M., Tseng E., Hutfless S., Wilson L.M., Suarez-Cuervo C., Berger Z., Chu Y., Iyoha E., Segal J.B., Bolen S. // Ann. Intern. Med. 2016. V. 164. P. 740–751. https://doi.org/10.7326/m15-2650
  6. Liu Z., Zhao X., Sun W., Wang Y., Liu S., Kang L. // Exp. Ther. Med. 2017. V. 13. P. 3137–3145. https://doi.org/10.3892/etm.2017.4333
  7. Wirngo F.E., Lambert M.N., Jeppesen P.B. // Rev. Diabet. Stud. 2016. V. 13. P. 113–131. https://doi.org/10.1900/rds.2016.13.113
  8. Wahab A. // Pharmaceuticals (Basel). 2010. V. 3. P. 2090–2110. https://doi.org/10.3390/ph3072090
  9. Kanwal A., Kanwar N., Bharati S., Srivastava P., Singh S.P., Amar S. // Biomedicines. 2022. V. 10. P. 331. https://doi.org/10.3390/biomedicines10020331
  10. Antony P., Vijayan R. // Int. J. Mol. Sci. 2021. V. 22. P. 9059. https://doi.org/10.3390/ijms22169059
  11. Borah A.K., Ahmed S.A., Borah J.C. // Phytomedicine Plus. 2022. V. 2. P. 100225. https://doi.org/10.1016/j.phyplu.2022.100225
  12. Navale A.M., Paranjape A.N. // Biophys. Rev. 2016. V. 8. P. 5–9. https://doi.org/10.1007/s12551-015-0186-2
  13. Ismail A., Tanasova M. // Int. J. Mol. Sci. 2022. V. 23. P. 8698. https://doi.org/10.3390/ijms23158698
  14. Konrad D., Bilan P.J., Nawaz Z., Sweeney G., Niu W., Liu Z., Antonescu C.N., Rudich A., Klip A. // Diabetes. 2002. V. 51. P. 2719–2726. https://doi.org/10.2337/diabetes.51.9.2719
  15. Lee J.O., Lee S.K., Kim J.H., Kim N., You G.Y., Moon J.W., Kim S.J., Park S.H., Kim H.S. // J. Biol. Chem. 2012. V. 287. P. 44121–44129. https://doi.org/10.1074/jbc.M112.361386
  16. Herman R., Kravos N.A., Jensterle M., Janež A., Dolžan V. // Int. J. Mol. Sci. 2022. V. 23. P. 1264. https://doi.org/10.3390/ijms23031264
  17. Bailey C., Day C. // Pract. Diabetes Int. 2004. V. 21. P. 115–117. https://doi.org/10.1002/pdi.606
  18. Rosak C., Mertes G. // Diabetes Metab. Syndr. Obes. 2012. V. 5. P. 357–367. https://doi.org/10.2147/dmso.s28340
  19. Shishtar E., Sievenpiper J.L., Djedovic V., Cozma A.I., Ha V., Jayalath V.H., Jenkins D.J., Meija S.B., de Souza R.J., Jovanovski E., Vuksan V. // PLoS One. 2014. V. 9. P. e107391. https://doi.org/10.1371/journal.pone.0107391.
  20. Kania-Dobrowolska M., Baraniak J. // Foods. 2022. V. 11. P. 2858. https://doi.org/10.3390/foods11182858
  21. Costello R.B., Dwyer J.T., Saldanha L., Bailey R.L., Merkel J., Wambogo E. // J. Acad. Nutr. Diet. 2016. V. 116. P. 1794–1802. https://doi.org/10.1016/j.jand.2016.07.015
  22. Sharma S., Mandal A., Kant R., Jachak S., Jagzape M. // J. Pak. Med. Assoc. 2020. Vol. 70. P. 2065–2069.
  23. Hu K., Huang H., Li H., Wei Y., Yao C. // Nutrients. 2023. V. 15. P. 1096. https://doi.org/10.3390/nu15051096
  24. Choi J., Kim K.-J. Koh E.-J., Lee B.-Y. // Nutrients. 2018. V. 10. P. 51. https://doi.org/10.3390/nu10010051
  25. Kovacs P., Hanson R.L., Lee Y.-H., Yang X., Kobes S., Permana P.A., Bogardus C., Baier L.J. // Diabetes. 2003. V. 52. P. 3005–3009. https://doi.org/10.2337/diabetes.52.12.3005
  26. Eckstein S.S., Weigert C., Lehmann R. // Curr. Med. Chem. 2017. V. 24. P. 1827–1852. https://doi.org/10.2174/0929867324666170426142826
  27. Chang Q., Li Y., White M.F., Fletcher J.A., Xiao S. // Cancer Res. 2002. V. 62. P. 6035–6038.
  28. Wang Y., Nishina P.M., Naggert J.K. // J. Endocrinol. 2009. V. 203. P. 65–74. https://doi.org/10.1677/JOE-09-0026
  29. Faddladdeen K.A.J. // Folia Morphol. (Warsz). 2021. V. 80. P. 149–157. https://doi.org/10.5603/FM.a2020.0034
  30. Shrivastava S.R., Shrivastava P.S., Ramasamy J. // J. Diabetes Metab. Disord. 2013. V. 12. P. 14. https://doi.org/10.1186/2251-6581-12-14
  31. Stull A.J., Wang Z.Q., Zhang X.H., Yu Y., Johnson W.D., Cefalu W.T. // Diabetes. 2012. V. 61. P. 1415–1422. https://doi.org/10.2337/db11-0744
  32. Behl T., Gupta A., Sehgal A., Albarrati A., Albratty M., Meraya A.M., Najmi A., Bhatia S., Bungau S. // Biomed. Pharmacother. 2022. V. 153. P. 113405. https://doi.org/10.1016/j.biopha.2022.113405
  33. Jung H.J., Seong S.H., Ali M.Y., Min B.S., Jung H.A., Choi J.S. // Arch. Pharm. Res. 2017. V. 40. P. 1403– 1413. https://doi.org/10.1007/s12272-017-0992-0
  34. Coughlan K.A., Valentine R.J., Ruderman N.B., Saha A.K. // Diabetes Metab. Syndr. Obes. 2014. V. 7. P. 241–253. https://doi.org/10.2147/DMSO.S43731
  35. Dugan L.L., You Y.H., Ali S.S., Diamond-Stanic M., Miyamoto S., DeCleves A.E., Andreyev A., Quach T., Ly S., Shekhtman G., Nguyen W., Chepetan A., Le T.P., Wang L., Xu M., Paik K.P., Fogo A., Viollet B., Murphy A., Brosius F., Naviaux R.K., Sharma K. // J. Clin. Invest. 2013. V. 123. P. 4888–4899. https://doi.org/10.1172/JCI66218
  36. Wu H., Deng X., Shi Y., Su Y., Wei J., Duan H. // J. Endocrinol. 2016. V. 229. P. R99–R115. https://doi.org/10.1530/JOE-16-0021
  37. Kleiner S., Mepani R.J., Laznik D., Ye L., Jurczak M.J., Jornayvaz F.R., Estall J.L., Chatterjee Bhowmick D., Shulman G.I., Spiegelman B.M. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 9635–9640. https://doi.org/10.1073/pnas.1207287109
  38. Rius-Pérez S., Torres-Cuevas I., Millán I., Ortega Á.L., Pérez S. // Oxid. Med. Cell Longev. 2020. V. 2020. P. 1452696. https://doi.org/10.1155/2020/1452696
  39. Kim M.J., Yun H., Kim D.H., Kang I., Choe W., Kim S.S., Ha J. // J. Ginseng Res. 2014. V. 38. P. 16–21. https://doi.org/10.1016/j.jgr.2013.11.010
  40. Hsu W.H., Chen T.H., Lee B.H., Hsu Y.W., Pan T.M. // Food Chem. Toxicol. 2014. V. 64. P. 94–103. https://doi.org/10.1016/j.fct.2013.11.015
  41. Li X., Wang L., Ma H. // Mol. Med. Rep. 2019. V. 20. P. 1754–1760. https://doi.org/10.3892/mmr.2019.10391
  42. Xu Z., Sun J., Tong Q., Lin Q., Qian L., Park Y., Zheng Y. // Int. J. Mol. Sci. 2016. V. 17. P. 2001. https://doi.org/10.3390/ijms17122001
  43. Kawano Y., Ryder J.W., Rincon J., Zierath J.R., Krook A., Wallberg-Henriksson H. // Am. J. Physiol. Endocrinol. Metab. 2001. V. 281. P. E1255–E1259. https://doi.org/10.1152/ajpendo.2001.281.6.e1255
  44. Huang X., Liu G., Guo J., Su Z. // Int. J. Biol. Sci. 2018. V. 14. P. 1483–1496. https://doi.org/10.7150/ijbs.27173.
  45. Song C., Liu D., Yang S., Cheng L., Xing E., Chen Z. // Exp. Ther. Med. 2018. V. 16. P. 3345–3352. https://doi.org/10.3892/etm.2018.6615
  46. Li J.C., Shen X.F., Shao J.A., Tao M.M., Gu J., Li J., Huang N. // Drug Des. Devel. Ther. 2018. V. 12. P. 2695–2706. https://doi.org/10.2147/DDDT.S171025
  47. Yang Q., Wen Y.M., Shen J., Chen M.M., Wen J.H., Li Z.M., Liang Y.Z., Xia N. // Diabetes Metab. Syndr. Obes. 2020. V. 13. P. 713–718. https://doi.org/10.2147/DMSO.S231979
  48. Cooper M.S., Stewart P.M. // J. Clin. Endocrinol. Metab. 2009. V. 94. P. 4645–4654. https://doi.org/10.1210/jc.2009-1412
  49. Blum A., Loerz C., Martin H.J., Staab-Weijnitz C.A., Maser E. // J. Steroid Biochem. Mol. Biol. 2012. V. 128. P. 51–55. https://doi.org/10.1016/j.jsbmb.2011.09.003
  50. Hintzpeter J., Stapelfeld C., Loerz C., Martin H.-J., Maser E. // PLoS One. 2014. V. 9. P. e84468. https://doi.org/10.1371/journal.pone.0084468
  51. Damayanti D.S., Utomo D.H., Kusuma C. // In Silico Pharmacol. 2016. V. 5. P. 3. https://doi.org/10.1007/s40203-017-0023-3
  52. Kang S., Tsai L.T., Rosen E.D. // Trends Cell Biol. 2016. V. 26. P. 341–351. https://doi.org/10.1016/j.tcb.2016.01.002
  53. Asadi S., Rahimi Z., Saidijam M., Shabab N., Goodarzi M.T. // Int. J. Mol. Cell Med. 2018. V. 7. P. 176–184. https://doi.org/10.22088/IJMCM.BUMS.7.3.176
  54. Kim D.H., Kim S.M., Lee B., Lee E.K., Chung K.W., Moon K.M., An H.J., Kim K.M., Yu B.P., Chung H.Y. // J. Nutr. Biochem. 2017. V. 45 P. 104–114. https://doi.org/10.1016/j.jnutbio.2017.04.014
  55. Marchelek-Mysliwiec M., Nalewajska M., TurońSkrzypińska A., Kotrych K., Dziedziejko V., Sulikowski T., Pawlik A. // Int. J. Mol. Sci. 2022. V. 23. P. 11611. https://doi.org/10.3390/ijms231911611
  56. Tang C., Ahmed K., Gille A., Lu S., Gröne H.J., Tunaru S., Offermanns S. // Nat. Med. 2015. V. 21. P. 173–177. https://doi.org/10.1038/nm.3779
  57. Prentice K.J., Wheeler M.B. // Cell Metab. 2015. V. 21. P. 353–354. https://doi.org/10.1016/j.cmet.2015.02.015
  58. Feng X.T., Duan H.M., Li S.L. // Int. J. Mol. Med. 2017. V. 40. P. 922–930. https://doi.org/10.3892/ijmm.2017.3070
  59. Dwitiyanti D., Harahap Y., Elya B., Bahtiar A. // Adv. Pharmacol. Pharm. Sci. 2021. V. 2021. P. 8869571. https://doi.org/10.1155/2021/8869571
  60. De León D.D., Crutchlow M.F., Ham J.Y., Stoffers D.A. // Int. J. Biochem. Cell Biol. 2006. V. 38. P. 845–859. https://doi.org/10.1016/j.biocel.2005.07.011
  61. Li Y., Zhang W., Zhao R., Zhang X. // Bioact. Mater. 2022. V. 15. P. 392–408. https://doi.org/10.1016/j.bioactmat.2022.02.025
  62. Seino Y., Fukushima M., Yabe D. // J. Diabetes Investig. 2010. V. 1. P. 8–23. https://doi.org/10.1111/j.2040-1124.2010.00022.x
  63. Chao E.C. // Clin. Diabetes. 2014. V. 32. P. 4–11. https://doi.org/10.2337/diaclin.32.1.4
  64. Saisho Y. // Diseases. 2020. V. 8. P. 14. https://doi.org/10.3390/diseases8020014
  65. Xu B., Li S., Kang B., Zhou J. // Cardiovasc. Diabetol. 2022. V. 21. P. 83. https://doi.org/10.1186/s12933-022-01512-w
  66. Moradi-Marjaneh R., Paseban M., Sahebkar A. // Phytother. Res. 2019. V. 33. P. 2518–2530. https://doi.org/10.1002/ptr.6421
  67. Anderson J.E. // Diabetes Spectr. 2020. V. 33. P. 165–174. https://doi.org/10.2337/ds19-0031
  68. Choi C.-I. // Molecules. 2016. V. 21. P. 1136. https://doi.org/10.3390/molecules21091136
  69. McCarty M.F., DiNicolantonio J.J. // Open Heart. 2015. V. 2. P. e000205. https://doi.org/10.1136/openhrt-2014-000205
  70. Taslimi P., Aslan H.E., Demir Y., Oztaskin N., Maraş A., Gulçin İ., Beydemir S., Goksu S. // Int. J. Biol. Macromol. 2018. V. 119. P. 857–863. https://doi.org/10.1016/j.ijbiomac.2018.08.004
  71. Li H., Zhou H., Zhang J., Fu X., Ying Z., Liu X. // Int. J. Food Properties. 2021. V. 24. P. 277–290. https://doi.org/10.1080/10942912.2021.1876087
  72. Brunkhorst C., Schneider E. // Res. Microbiol. 2005. V. 156. P. 851–857. https://doi.org/10.1016/j.resmic.2005.03.008
  73. Rosak C., Mertes G. // Curr. Diabetes Rev. 2009. V. 5. P. 157–164. https://doi.org/10.2174/157339909788920910
  74. Dalsgaard N.B., Gasbjerg L.S., Hansen L.S., Hansen N.L., Stensen S., Hartmann B., Rehfeld J.F., Holst J.J., Vilsbøll T., Knop F.K. // Eur. J. Endocrinol. 2021. V. 184. P. 383–394. https://doi.org/10.1530/EJE-20-1121
  75. Hofmann O., Vértesy L., Braunitzer G. // Biol. Chem. Hoppe Seyler. 1985. V. 366. P. 1161–1168. https://doi.org/10.1515/bchm3.1985.366.2.1161
  76. Heyl D.L., Fernandes S., Khullar L., Stephens J., Blaney E., Opang-Owusu H., Stahelin B., Pasko T., Jacobs J., Bailey D., Brown D., Milletti M.C. // Bioorg. Med. Chem. 2005. V. 13. P. 4262– 4268. https://doi.org/10.1016/j.bmc.2005.04.019
  77. Ben Nejma M., Sioud O., Mastouri M. // 3 Biotech. 2018. V. 8. P. 1. https://doi.org/10.1007/s13205-017-1019-8
  78. Saxena L., Iyer B. K., Ananthanarayan L. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010. V. 878. P. 1549–1554. https://doi.org/10.1016/j.jchromb.2010.04.009
  79. Heo S.J., Hwang J.Y., Choi J.I., Han J.S., Kim H.J., Jeon Y.J. // Eur. J. Pharmacol. 2009. V. 615. P. 252– 256. https://doi.org/10.1016/j.ejphar.2009.05.017
  80. Admassu H., Gasmalla M.A.A., Yang R., Zhao W. // J. Agricult. Food Chem. 2018. V. 66. P. 4872–4882. https://doi.org/10.1021/acs.jafc.8b00960
  81. Tysoe C., Williams L.K., Keyzers R., Nguyen N.T., Tarling C., Wicki J., Goddard-Borger E.D., Aguda A.H., Perry S., Foster L.J., Andersen R.J., Brayer G.D., Withers S.G. // ACS Cent Sci. 2016. V. 2. P. 154–161. https://doi.org/10.1021/acscentsci.5b00399
  82. Sintsova O., Popkova D., Kalinovskii A., Rasin A., Borozdina N., Shaykhutdinova E., Klimovich A., Menshov A., Kim N., Anastyuk S., Kusaykin M., Dyachenko I., Gladkikh I., Leychenko E. // Biomed. Pharmacother. 2023. V. 168. P. 115743. https://doi.org/10.1016/j.biopha.2023.115743
  83. Sintsova O.V., Leychenko E.V., Gladkikh I.N., Anastyuk S.D., Monastyrnaya M.M., and Kozlovskaya E.P. // Vestnik of the Far East Branch of the Russian Academy of Sciences. 2018. V. 6S. P. 66. https://doi.org/10.25808/08697698.2018.202.6S.082
  84. Sintsova O., Gladkikh I., Kalinovskii A., Zelepuga E., Monastyrnaya M., Kim N., Shevchenko L., Peigneur S., Tytgat J., Kozlovskaya E., Leychenko E. // Marine Drugs. 2019. V. 17. P. 542. https://doi.org/10.3390/md17100542
  85. Bhuyan P., Sarma S., Ganguly M., Hazarika J., Mahanta R. // J. Mol. Structure. 2020. V. 1222. P. 128957. https://doi.org/10.1016/j.molstruc.2020.128957
  86. Schleicher E.D., Weigert C. // Kidney Int. Suppl. 2000. V. 58. P. S13–S18. https://doi.org/10.1046/j.1523-1755.2000.07703.x
  87. Srinivasan V., Sandhya N., Sampathkumar R., Farooq S., Mohan V., Balasubramanyam M. // Clin. Biochem. 2007. V. 40. P. 952–957. https://doi.org/10.1016/j.clinbiochem.2007.05.002
  88. Li J.Y., Wang Y.D., Qi X.Y., Ran L., Hong T., Yang J., Yan B., Liao Z.Z., Liu J.H., Xiao X.H. // Clin. Chim. Acta. 2019. V. 494. P. 52–57. https://doi.org/10.1016/j.cca.2019.03.006
  89. Peng L., Wei Y., Shao Y., Li Y., Liu N., Duan L. // Mediators Inflamm. 2021. V. 2021. P. 5576059. https://doi.org/10.1155/2021/5576059
  90. Paradis R., Lazar N., Antinozzi P., Perbal B., Buteau J. // PLoS One. 2013. V. 8. P. e64957. https://doi.org/10.1371/journal.pone.0064957
  91. Wang H., Huang B., Hou A., Xue L., Wang B., Chen J., Li M., Zhang J.V. // Am. J. Physiol. Endocrinol. Metab. 2021. V. 320. P. E786–E796. https://doi.org/10.1152/ajpendo.00230.2020
  92. Wang P., Sang S. // Biofactors. 2018. V. 44. P. 16–25. https://doi.org/10.1002/biof.1410
  93. Xia N., Daiber A., Förstermann U., Li H. // Br. J. Pharmacol. 2017. V. 174. P. 1633–1646. https://doi.org/10.1111/bph.13492
  94. Zheng T., Chen H. // Mol. Immunol. 2021. V. 137. P. 163–173. https://doi.org/10.1016/j.molimm.2021.06.011
  95. Frkic R.L., Richter K., Bruning J.B. // J. Biol. Chem. 2021. V. 297. P. 101030. https://doi.org/10.1016/j.jbc.2021.101030
  96. Rangwala S.M., Lazar M.A. // Trends Pharmacol. Sci. 2004. V. 25. P. 331–336. https://doi.org/10.1016/j.tips.2004.03.012.
  97. Ma X., Wang D., Zhao W., Xu L. // Front. Endocrinol (Lausanne). 2018. V. 9. P. 473. https://doi.org/10.3389/fendo.2018.00473
  98. Александров А.А. // РМЖ. 2011. Т. 13. С. 847.
  99. Mazidi M., Karimi E., Meydani M., GhayourMobarhan M., Ferns G.A. // World J. Methodol. 2016. V. 6. P. 112–127. https://doi.org/10.5662/wjm.v6.i1.112
  100. Balbaa M., El-Zeftawy M., Abdulmalek S.A. // Molecules. 2021. V. 26. P. 6836. https://doi.org/10.3390/molecules26226836
  101. Sireesh D., Dhamodharan U., Ezhilarasi K., Vijay V., Ramkumar K.M. // Sci. Rep. 2018. V. 8. P. 5126. https://doi.org/10.1038/s41598-018-22913-6
  102. Reis A.A. da S., Santos R. da S., Cruz A.H. da S., Silva E.G. da, Cruz A.D. da, Pedrino G.R. // InTech. 2016. https://doi.org/10.5772/66132
  103. Zamanian M.Y., Giménez-Llort L., Nikbakhtzadeh M., Kamiab Z., Heidari M., Bazmandegan G. // Curr. Mol. Pharmacol. 2023. V. 16. P. 331–345. https://doi.org/10.2174/1874467215666220620143655
  104. Cuadrado A., Manda G., Hassan A., Alcaraz M.J., Barbas C., Daiber A., Ghezzi P., León R., López M.G., Oliva B., Pajares M., Rojo A.I., Robledinos-Antón N., Valverde A.M., Guney E., Schmidt H.H.H.W. // Pharmacol. Rev. 2018. V. 70. P. 348–383. https://doi.org/10.1124/pr.117.014753
  105. Matzinger M., Fischhuber K., Heiss E.H. // Biotechnol. Adv. 2018. V. 36. P. 1738–1767. https://doi.org/10.1016/j.biotechadv.2017.12.015
  106. Ghareghomi S., Rahban M., Moosavi-Movahedi Z., Habibi-Rezaei M., Saso L., Moosavi-Movahedi A.A. // Molecules. 2021. V. 26. P. 7658. https://doi.org/10.3390/molecules26247658
  107. Chang C.L., Lin Y., Bartolome A.P., Chen Y.C., Chiu S.C., Yang W.C. // Evid. Based Complement Alternat. Med. 2013. V. 2013. P. 378657. https://doi.org/10.1155/2013/378657
  108. Riyaphan J., Pham D.C., Leong M.K., Weng C.F. // Biomolecules. 2021. V. 11. P. 1877. https://doi.org/10.3390/biom11121877
  109. Agarwal P. // Res. Rev. J. Med. Health Sci. 2016. V. 5. P. 1–8.
  110. Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce, Supuran C.T. // Nat. Rev. Drug Discov. 2021. V. 20. P. 200–216. https://doi.org/10.1038/s41573-020-00114-z

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Пути регулирования инсулинорезистентности, метаболизма жиров и глюкозы при СД2. Перспективными способами регулирования инсулинорезистентности считаются ингибирование 11β-HSD1, p38 MAPK, PTР1B, DPP-4, активация IRS1 и GLP-1R. Транслокации GLUT4 на поверхность мембраны способствует снижению инсулинорезистентности. Для активации окисления FFA и снижения окислительного стресса предлагается активация AMPK и PGC-1α, повышение GLP-1 и GIP, уменьшение экспрессии FFAR.

Скачать (217KB)
3. Рис. 2. Эффект ингибиторов α-амилаз при СД2. Ингибиторы α-амилаз не только снижают пиковую концентрацию глюкозы при приеме пищи, но и запускают механизмы регулирования инсулинорезистентности и метаболизма FFA через секрецию GLP-1, а также непосредственно через предотвращение гипергликемии.

Скачать (140KB)

© Российская академия наук, 2024