РНК-ИНТЕРФЕРЕНЦИЯ КАК МЕТОД ВАЛИДАЦИИ ФАРМАКОЛОГИЧЕСКИХ МИШЕНЕЙ В ЛЕЧЕНИИ ФИБРОЗА
- Авторы: Микаелян А.С1, Халимани Н.2, Федорова В.В2, Котелевцев Ю.В2
-
Учреждения:
- Институт биологии развития им. Н.К. Кольцова РАН
- Сколковский институт науки и технологии
- Выпуск: Том 51, № 5 (2025)
- Страницы: 758-768
- Раздел: ОБЗОРНЫЕ СТАТЬИ
- URL: https://edgccjournal.org/0132-3423/article/view/695705
- DOI: https://doi.org/10.31857/S0132342325050037
- ID: 695705
Цитировать
Полный текст
Аннотация
РНК-интерференция (RNAi) – эволюционно консервативный механизм подавления экспрессии генов, основанный на деградации мРНК под действием малых интерферирующих РНК (siRNA). Открытие этого механизма стало не только мощным инструментом для фундаментальных исследований в биологии, но и открыло новые перспективы для терапевтической медицины. С точки зрения эффективности и безопасности терапия с помощью siRNA представляет собой многообещающую альтернативу традиционным фармацевтическим подходам. В отличие от традиционных фармакологических методов, которые часто характеризуются системной токсичностью и низкой специфичностью, терапия на основе siRNA позволяет селективно подавлять гены, ассоциированные с патологиями, обеспечивая высокоточное воздействие и низкую токсичность. Особый интерес представляет применение siRNA для модуляции активности макрофагов – ключевых эффекторов врожденного иммунитета, играющих центральную роль в развитии фиброза печени. Благодаря высокой пластичности макрофаги способны поляризоваться в провоспалительный (M1) или противовоспалительный (M2) фенотипы, что определяет их вклад в прогрессирование или регресс фиброза. Эпигенетические модификации и подавление ключевых регуляторов поляризации (таких как EGR2, IRF5, IRF3, TLR4, HAS2) с помощью siRNA позволяют целенаправленно изменять их функциональное состояние. В данном обзоре систематизированы современные данные о роли макрофагов в патогенезе фиброза печени и перспективах использования siRNA-терапии для управления их активностью. Обсуждаются стратегии прецизионного воздействия на ключевые молекулярные мишени, что открывает новые возможности для разработки патогенетически обоснованных методов лечения.
Ключевые слова
Об авторах
А. С Микаелян
Институт биологии развития им. Н.К. Кольцова РАНМосква, Россия
Н. Халимани
Сколковский институт науки и технологииМосква, Россия
В. В Федорова
Сколковский институт науки и технологииМосква, Россия
Ю. В Котелевцев
Сколковский институт науки и технологии
Email: y.kotelevtsev@skoltech.ru
Москва, Россия
Список литературы
- Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. // Nature. 1998. V. 391. P. 806–811. https://doi.org/10.1038/35888
- Hannon G.J. // Nature. 2002. V. 418. P. 244–251. https://doi.org/10.1038/418244a
- Zhu Y., Zhu L., Wang X., Jin H. // Cell Death Dis. 2022. V. 13. P. 644. https://doi.org/10.1038/s41419-022-05075-2
- Jadhav V., Vaishnaw A., Fitzgerald K., Maier M.A. // Nat Biotechnol. 2024. V. 42. P. 394–405. https://doi.org/10.1038/s41587-023-02105-y
- Egli M., Manoharan M. // Nucleic Acids Res. 2023. V. 51. P. 2529–2573. https://doi.org/10.1093/nar/gkad067
- Whitehead K.A., Dorkin J.R., Vegas A.J., Chang P.H., Veiseh O., Matthews J., Fenton O.S., Zhang Y., Olejnik K.T., Yesilyurt V., Chen D., Barros S., Klebanov B., Novobrantseva T., Langer R., Anderson D.G. // Nat Commun. 2014. V. 5. P. 4277. https://doi.org/10.1038/ncomms5277
- Nair J.K., Willoughby J.L., Chan A., Charisse K., Alam M.R., Wang Q., Hoekstra M., Kandasamy P., Kel’in A.V., Milstein S., Taneja N., O’Shea J., Shaikh S., Zhang L., van der Sluis R.J., Jung M.E., Akinc A., Hutabarat R., Kuchimanchi S., Fitzgerald K., Zimmermann T., van Berkel T.J., Maier M.A., Rajeev K.G., Manoharan M. // J. Am. Chem.Soc. 2014. V. 136. P. 16958–16961. https://doi.org/10.1021/ja505986a
- Hu B., Zhong L., Weng Y., Peng L., Huang Y., Zhao Y., Liang X.J. // Signal Transduct Target Ther. 2020. V. 5. P. 101. https://doi.org/10.1038/s41392-020-0207-x
- Belgrad J., Fakih H.H., Khvorova A. // Nucleic Acid Ther. 2024. V. 34. P. 52–72. https://doi.org/10.1089/nat.2023.0068
- Padda I.S., Mahtani A.U., Patel P., Parmar M. // Small Interfering RNA (siRNA) Therapy / In: StatPearls Publishing. 2025. https://www.ncbi.nlm.nih.gov/books/NBK580472/
- Lu D., Dou F., Gao J. // Drug. Discov. Ther. 2025. V. 19. P. 131–132. https://doi.org/10.5582/ddt.2025.01031
- Younossi Z.M., Golabi P., Paik J.M., Henry A., Van Dongen C., Henry L. // Hepatology. 2023. V. 77. P. 1335–1347. https://doi.org/10.1097/HEP.0000000000000004
- Vonderlin J., Chavakis T., Sieweke M., Tacke F. // Cell Mol Gastroenterol Hepatol. 2023. V. 15. P. 1311– 1324. https://doi.org/10.1016/j.jcmgh.2023.03.002
- Halimani N., Nesterchuk M., Andreichenko I.N., Tsitrina A.A., Elchaninov A., Lokhonina A., Fatkhudinov T., Dashenkova N.O., Brezgina V., Zatsepin T.S., Mikaelyan A.S., Kotelevtsev Y.V. // Cells. 2022. V. 11. P. 2498. https://doi.org/10.3390/cells11162498
- Wynn T.A., Vannella K.M. // Immunity. 2016. V. 44. P. 450–462. https://doi.org/10.1016/j.immuni.2016.02.015
- Pakshir P., Hinz B. // Matrix Biol. 2018. V. 68–69. P. 81–93. https://doi.org/10.1016/J.MATBIO.2018.01.019
- Wen Y., Lambrecht J., Ju C., Tacke F. // Cell. Mol. Immunol. 2021. V. 18. P. 45–56. https://doi.org/10.1038/s41423-020-00558-8
- Veremeyko T., Yung A.W.Y., Anthony D.C., Strekalova T., Ponomarev E.D. // Front Immunol. 2018. V. 9. P. 2515. https://doi.org/10.3389/fimmu.2018.02515
- Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. // J. Immunol. 2000. V. 164. P. 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166
- Murray P.J. // Annu. Rev. Physiol. 2017. V. 79. P. 541– 566.
- Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.-A., Mardani F., Seifi B., Mohammadi A., Afshari J.T., Sahebkar A. // J. Cell. Physiol. 2018. V. 233. P. 6425–6440. https://doi.org/10.1002/jcp.26429
- Ajay C. // Circ. Res. 2010. V. 106. P. 1559–1569. https://doi.org/10.1161/CIRCRESAHA.110.216523
- Rath M., Müller I., Kropf P., Closs E.I., Munder M. // Front Immunol. 2014. V. 5. P. 532.
- Macrophage Polarization - Mini-Review // Bio-Rad. https://www.bio-rad-antibodies.com/macrophage-polarization-minireview.html
- Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. // Front Immunol. 2019. V. 10. P. 1084.
- Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F., Mege J., Mosser D., Natoli G., Saeij J., Schultze J., Shirley K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S., Wynn T. // Immunity. 2014. V. 41. P. 14–20. https://doi.org/10.1016/j.immuni.2014.06.008
- Jablonski K.A., Amici S.A., Webb L.M., Ruiz-Rosado J. de D., Popovich P.G., Partida-Sanchez S., Gueraude-Arellano M. // PLoS One. 2015. V. 10. e0145342. https://doi.org/10.1371/journal.pone.0145342
- Daniel B., Czimmerer Z., Halasz L., Boto P., Kolostyak Z., Poliska S., Berger W.K., Tzerpos P., Nagy G., Horvath A., Hajas G., Cseh T., Nagy A., Sauer S., Francois-Deleuze J., Szatmari I., Bacsi A., Nagy L. // Genes Dev. 2020. V. 34. P. 1474–1492. https://doi.org/10.1101/gad.343038.120
- Liao J., Hargreaves D.C. // Genes Dev. 2020. V. 34. P. 1407–1409. https://doi.org/10.1101/gad.345140.120
- Pan T., Zhou Q., Miao K., Zhang L., Wu G., Yu J., Xu Y., Xiong W., Li Y., Wang Y. // Theranostics. 2021. V. 11. P. 1192–1206. https://doi.org/10.7150/thno.48152
- Krausgruber T., Blazek K., Smallie T., Alzabin S., Lockstone H., Sahgal N., Hussell T., Feldmann M., Udalova I.A. // Nat. Immunol. 2011. V. 12. P. 231–238. https://doi.org/10.1038/ni.1990
- Weiss M., Blazek K., Byrne A.J., Perocheau D.P., Udalova I.A. // Mediators Inflamm. 2013. V. 2013. P. 245804. https://doi.org/10.1155/2013/245804
- Saliba D.G., Heger A., Eames H.L., Oikonomopoulos S., Teixeira A., Blazek K., Androulidaki A., Wong D., Goh F.G., Weiss M., Byrne A., Pasparakis M., Ragoussis J., Udalova I.A. // Cell Rep. 2014. V. 8. P. 1308–1317. https://doi.org/10.1016/j.celrep.2014.07.034
- Almuttaqi H., Udalova I.A. // FEBS J. 2019. V. 286. P. 1624–1637. https://doi.org/10.1111/FEBS.14654
- Paun A., Bankoti R., Joshi T., Pitha P.M., Stäger S. // PLoS Pathog. 2011. V. 7. https://doi.org/10.1371/journal.ppat.1001246
- Paun A., Reinert J.T., Jiang Z., Medin C., Balkhi M.Y., Fitzgerald K.A., Pitha P.M. // J. Biol. Chem. 2008. V. 283. P. 14295–14308. https://doi.org/10.1074/jbc.M800501200
- Hedl M., Yan J., Witt H., Abraham C. // J. Immunol. 2019. V. 202. P. 920–930. https://doi.org/10.4049/jimmunol.1800226
- Viola A., Munari F., Sánchez-Rodríguez R., Scolaro T., Castegna A. // Front. Immunol. 2019. V. 10. P. 1462. https://doi.org/10.3389/fimmu.2019.01462
- Guiteras J., Ripoll É., Bolaños N., De Ramon L., Fontova P., Lloberas N., Cruzado J.M., Aràn J.M., Aviñó A., Eritja R., Gomà M., Taco R., Grinyó J.M., Torras J. // Mol. Ther. Nucleic Acids. 2021. V. 24. P. 807–821. https://doi.org/10.1016/j.omtn.2021.03.019
- Alzaid F., Lagadec F., Albuquerque M., Ballaire R., Orliaguet L., Hainault I., Blugeon C., Lemoine S., Lehuen A., Saliba D.G., Udalova I.A., Paradis V., Foufelle F., Venteclef N. // JCI Insight. 2016. V. 1. https://doi.org/10.1172/jci.insight.88689
- Sun K., Qu J., Chen J., Dang S., He S., Zhang J., Xie R., Wang Y., Zhang J. // Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017. V. 33. P. 168–173.
- Günthner R., Anders H.J. // Mediators Inflamm. 2013. V. 2013. P. 731023. https://doi.org/10.1155/2013/731023
- Petro T.M. // J. Immunol. 2020. V. 205. P. 1981–1989. https://doi.org/10.4049/jimmunol.2000462
- Petrasek J., Dolganiuc A., Csak T., Nath B., Hritz I., Kodys K., Catalano D., Kurt-Jones E., Mandrekar P., Szabo G. // Hepatology. 2011. V. 53. P. 649–660. https://doi.org/10.1002/hep.24059
- Iracheta-Vellve A., Petrasek J., Gyongyosi B., Satishchandran A., Lowe P., Kodys K., Catalano D., Calenda C.D., Kurt-Jones E.A., Fitzgerald K.A., Szabo G. // J. Biol. Chem. 2016. V. 291. P. 26794–26805. https://doi.org/10.1074/jbc.M116.736991
- Yanai H., Chiba S., Hangai S., Kometani K., Inoue A., Kimura Y., Abe T., Kiyonari H., Nishio J., Taguchi- Atarashi N., Mizushima Y., Negishi H., Grosschedl R., Taniguchi T. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. 5253–5258. https://doi.org/10.1073/pnas.1803936115
- Farlik M., Reutterer B., Schindler C., Greten F., Vogl C., Müller M., Decker T. // Immunity. 2010. V. 33. P. 25–34. https://doi.org/10.1016/j.immuni.2010.07.001
- Moore T.C., Petro T.M. // FEBS Lett. 2013. V. 587. P. 3014–3020. https://doi.org/10.1016/j.febslet.2013.07.025
- Freed S.M., Baldi D.S., Snow J.A., Athen S.R., Guinn Z.P., Pinkerton T.S., Petro T.M., Moore T.C. // FEBS Lett. 2021. V. 595. P. 2665–2674. https://doi.org/10.1002/1873-3468.14200
- Lu Y.C., Yeh W.C., Ohashi P.S. // Cytokine. 2008. V. 42. P. 145–151. https://doi.org/10.1016/j.cyto.2008.01.006
- Fitzgerald K.A., Kagan J.C. // Cell. 2020. V. 180. P. 1044–1066. https://doi.org/10.1016/j.cell.2020.02.041
- Leifer C.A., Medvedev A.E. // J. Leukoc. Biol. 2016. V. 100. P. 927–941. https://doi.org/10.1189/jlb.2MR0316-117RR
- Takaoka A., Yanai H., Kondo S., Duncan G., Negishi H., Mizutani T., Kano S., Honda K., Ohba Y., Mak T.W., Taniguchi T. // Nature. 2005. V. 434. P. 243– 249. https://doi.org/10.1038/nature03308
- Kolb J.P., Casella C.R., SenGupta S., Chilton P.M., Mitchell T.C. // Sci. Signal. 2014. V. 7. https://doi.org/10.1126/scisignal.2005442
- Gudowska M., Gruszewska E., Panasiuk A., Cylwik B., Flisiak R., Świderska M., Szmitkowski M., Chrostek L. // Clin. Exp. Med. 2016. V. 16. P. 523– 528. https://doi.org/10.1007/s10238-015-0388-8
- Caon I., Bartolini B., Parnigoni A., Caravà E., Moretto P., Viola M., Karousou E., Vigetti D., Passi A. // Semin. Cancer Biol. 2020. V. 62. P. 9–19. https://doi.org/10.1016/j.semcancer.2019.07.007
- Yang Y.M., Noureddin M., Liu C., Ohashi K., Kim S.Y., Ramnath D., Powell E.E., Sweet M.J., Roh Y.S., Hsin I.F., Deng N., Liu Z., Liang J., Mena E., Shouhed D., Schwabe R.F., Jiang D., Lu S.C., Noble P.W., Seki E. // Sci. Transl. Med. 2019. V. 11. https://doi.org/10.1126/scitranslmed.aat9284
- Halimani N., Nesterchuk M., Tsitrina A.A., Sabirov M., Andreichenko I.N., Dashenkova N.O., Petrova E., Kulikov A.M., Zatsepin T.S., Romanov R.A., Mikaelyan A.S., Kotelevtsev Y.V. // Sci. Rep. 2024. V. 14. P. 2797. https://doi.org/10.1038/s41598-024-53089-x
- Vollmann E.H., Cao L., Amatucci A., Reynolds T., Hamann S., Dalkilic-Liddle I., Cameron T.O., Hossbach M., Kauffman K.J., Mir F.F., Anderson D.G., Novobrantseva T., Koteliansky V., Kisseleva T., Brenner D., Duffield J., Burkly L.C. // Mol. Ther. Nucleic Acids. 2017. V. 7. P. 314–323. https://doi.org/10.1016/j.omtn.2017.04.014
- Li C., Sun S., Kong H., Xie X., Liang G., Zhang Y., Wang H., Li J. // RSC Chem. Biol. 2024. V. 6. P. 73–80. https://doi.org/10.1039/d4cb00247d
- Alnylam and Regeneron. https://investors.alnylam.com/press-release?id=26976
Дополнительные файлы




