Pulsating Combustion of a Hydrogen-Air Mixture in a Channel with Sudden Expansion

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A high-speed turbulent reacting flow in a channel with a sudden expansion in the form of two symmetrically located steps is numerically investigated. Various combustion phases are described: initial phase with low combustion completeness and intensive one with high combustion completeness. In the intensive phase, depending on the heat release power, a pulsating (self-oscillating) combustion mode can be realized with periodic movement of the intensive heat release zone upstream and downstream and also a mode with thermal choking, in which the shock formed in the thermal throat, spreading upstream, enters the narrow injector channel part and blocks the flow. The transition to subsonic flow occurs if the heat release exceeds the total heat flux at the inlet by one and a half times or more. The pulsating mode, in which the velocity in the flow core remains supersonic, is realized if the total heat release power is approximately equal to the heat flux at the channel entrance. An analysis of the stages of the pulsating nonpremixed hydrogen-air combustion showed that the flame flashback accompanied by an increase in heat release, is caused by the boundary layer separation and the formation of a hot wall jet directed toward the step, i.e. against the core flow. After the heat source has stabilized at the beginning of the channel, the heat source power decreases due to the complete burnout of the oxidizer, as a result of which the thermal throat expands and fresh reagents enter the channel. At the end of the channel straight section, a new heat source is formed, which starts moving upstream, and the whole process is repeated periodically.

全文:

受限制的访问

作者简介

N. Fedorova

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nfed@itam.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Anderson J.D. Fundamentals of Aerodynamics. New York: McGraw-Hill, 2007.
  2. M. Sun, H. Wang, Z. Cai, J. Zhu Unsteady Supersonic Combustion. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3595-6
  3. Liberman M.A. Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion. Springer Int. Publ., 2021.
  4. Larionov V.M., Zaripov R.G. Gas Self-Oscillations in Combustion Installations. Kazan: Publishing house of Kazan. state technical university, 2003. 227 pp.
  5. Meng X., de Jong W., Kudra T. // Renew. Sust. Energ. Rev. 2016. V. 55. P. 73. https://doi.org/10.1016/j.rser.2015.10.110
  6. Poinsot T. // Proc. Comb. Inst. 2017. V. 36. № 1. P. 1. https://doi.org/10.1016/j.proci.2016.05.007
  7. Rauschenbach B.V. Vibrational combustion. Moscow: Fizmatgiz, 1967.
  8. Lieuwen T. C. Unsteady Combustor Physics. Cambridge: Cambridge University Press, 2021. https://doi.org/10.1017/9781108889001
  9. Mejia D., Selle L., Bazile R., Poinsot T. // Proc. Combust. Inst. 2015. V. 35. № 3. P. 3201. https://doi.org/10.1016/j.proci.2014.07.015
  10. Choi J.-Y., Ma F., Yang V. // Ibid. 2005. V. 30. P. 2851. https://doi.org/10.1016/j.proci.2004.08.250
  11. Lin K.-C., Jackson K., Behdadnia R. et al. // J. Propul. Power. 2010. V. 26. P. 1161. https://doi.org/10.2514/1.43338
  12. Wang H., Wang Z., Sun M. // Exp. Therm. Fluid Sci. 2013.V. 45. P. 259. https://doi.org/10.1016/j.expthermflusci.2012.10.013
  13. Wang H., Wang Z., Sun M., Wu H. // Sci. China Technol. Sc. 2013. V. 56. P. 1093. https://doi.org/10.1007/s11431-013-5198-1
  14. Wang H., Wang Z., Sun M., Qin N. // Int. J. Hydrogen Energ. 2013. V. 38. P. 5918. https://doi.org/10.1016/j.ijhydene.2013.02.100
  15. Ouyang H., Liu W., Sun M. // Acta Astronaut. 2015. V. 117. P. 90. https://doi.org/10.1016/j.actaastro.2015.07.016
  16. Han Y., He Y., Tian Y., Zhong F., Le J. // Aerosp. Sci. Technol. 2018. V. 72. P. 114. https://doi.org/10.1016/j.ast.2017.11.003
  17. Zhao G.-Y., Sun M.-B., Song X.-L., Li X.-P., Wang H.-B. // Acta Astronaut. 2019. V. 155. P. 255. https://doi.org/10.1016/j.actaastro.2018.12.011
  18. Nguyen T.M., Sirignano W.A. // AIAA J. 2019. V. 57. P. 5351. https://doi.org/10.2514/1.J057743
  19. Vlasenko V.V., Sabelnikov V.A., Molev S.S. et al. // Shock Waves. 2020. V. 30. P. 245. https://doi.org/10.1007/s00193-020-00941-4
  20. Jeong S.-M., Han H.-S., Sung B.-K. et al. AIAA Paper 2021-3535. https://doi.org/10.2514/6.2021-3535
  21. Jeong S.-M., Han H.-S., Sung B.-K. et al. // Aerospace. 2023. V. 10. P. 932. https://doi.org/10.3390/aerospace10110932
  22. Wang T., Wang Z., Sun M., Li F., Huang Y. // AIAA J. 2023. V. 61. P. 2591. https://doi.org/10.2514/1.J062051
  23. Guo S., Zhang X., Liu Q., Yue L. // Phys. Fluids. 2023. V. 35. P. 045108. https://doi.org/10.1063/5.0142210
  24. Jeong S.-M., Lee J.-H., Choi J.-Y. // Proc. Combust. Inst. 2023. V. 39. P. 3107. https://doi.org/10.1016/j.proci.2022.07.245
  25. Boulal S., Genot A., Klein J.-M. et al. // Combust. Flame. 2023. V. 257. P. 112999. https://doi.org/10.1016/j.combustflame.2023.112999
  26. Mohamadi M., Tahsini A. M., Tavazohi R. // Int. J. Hydrogen Energ. 2024. V. 67. P. 769. https://doi.org/10.1016/j.ijhydene.2024.04.205
  27. Yasunaga S., Nakaya S., Tsue M. // Proc. Combust. Inst. 2024. V. 40. P. 105302. https://doi.org/10.1016/j.proci.2024.105302
  28. Zhang L., Li S., Liu T., Zhou H., Ren Z. // Int. J. Hydrogen Energ. 2025. V. 97. P. 444. https://doi.org/10.1016/j.ijhydene.2024.11.402
  29. Zakharova Y.V, Fedorova N. N., Goldfeld M. A., Vankova O. S. // J. Phys. Conf. Ser. 2019. V. 1382. P. 012055. https://doi.org/10.1088/1742-6596/1382/1/012055
  30. Fedorova N.N., Goldfeld M.A. // Tech. Phys. Lett+. 2021. V. 47. № 1. P. 50. https://doi.org/10.1134/S1063785021010193
  31. Fedorova N. N., Vankova O. S., Goldfeld M. A. // Combust. Explo. Shock+. 2022. V. 58. P. 127. https://doi.org/10.1134/S00105082220200
  32. Fedorova N. N., Goldfeld M. A., Pickalov V.V. // Combust. Explo. Shock+. 2022. V. 58. P. 536. https://doi.org/10.1134/S0010508222050057
  33. Fedorova N. N., Goldfeld M. A., Pickalov V. V. // Combust. Explo. Shock+. 2022. V. 58. P. 546. https://doi.org/10.1134/S0010508222050069
  34. Fedorova N. N. // Combust. Explo. Shock+. 2023. V. 59. P. 402. https://doi.org/10.1134/S0010508223040020
  35. Goldfeld M.A. // Thermophys. Aeromech+. 2020. V. 27 P. 573. https://doi.org/10.1134/S0869864320040101
  36. Maas U., Warnatz J. // Combust. Flame. 1988. V. 74. № 1. P. 53. https://doi.org/10.1016/0010-2180(88)90086-7
  37. Vankova O.S., Fedorova N.N. // Combust. Explo. Shock+. 2021. V. 57. P. 398. https://doi.org/10.15372/FGV20210402
  38. Yamashita H., Shimada M., Takeno T. // Proc. Combust. Inst. 1996. V. 26(1). P. 27. https://doi.org/10.1016/S0082-0784(96)80196-2
  39. Gerlinger P., Stoll P., Kindler M., Schneider F., Aigner M. // Aerosp. Sci. Technol. 2008. V. 12(2). P. 159. https://doi.org/10.1016/j.ast.2007.04.003

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Calculation domain and boundary conditions.

下载 (454KB)
3. Fig. 2. a - Experimental (symbols) and calculated distributions of static pressure on the wall for cases without and with hydrogen injection, b - Experimental (symbols) and calculated distributions of heat fluxes.

下载 (923KB)
4. Fig. 3. a - Calculated distributions of hydrogen mass fraction in cross sections x / h = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6) and 12 (7); b - mass-averaged homogeneity index of the mixture.

下载 (653KB)
5. Fig. 4. Integral monitor plots of: total heat release (1), volume-averaged static temperature (2), mass of H2O (3), OH (4) and HO2 (5) as a function of time.

下载 (595KB)
6. Fig. 5. Fields of static pressure (a), static temperature (b), heat release (c) and flame index (d) in the longitudinal section passing through the centre of the injection hole at time t1.

下载 (4MB)
7. Fig. 6. Fields of mass fractions of H2 (a), O2 (b), OH (c), H2O (d) in cross sections x / h = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6) and 12 (7) at time t1.

下载 (2MB)
8. Fig. 7. Fields of static pressure (a), static temperature (b), heat release (c) and flame index (d) in the longitudinal section passing through the centre of the injection hole at time t3.

下载 (4MB)
9. Fig. 8. Mass fraction fields of H2 (a), O2 (b), OH (c), H2O (d) in cross sections x / h = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6), and 12 (7) at time t3.

下载 (2MB)
10. Fig. 9. Fields of static pressure (a), static temperature (b), heat release (c) and flame index (d) in the longitudinal section passing through the centre of the injection hole at time t4.

下载 (3MB)
11. Fig. 10. Mass fraction fields of H2 (a), O2 (b), OH (c), H2O (d) in cross sections x / h = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6), and 12 (7) at time t4.

下载 (2MB)
12. Fig. 11. Fields of static pressure (a), static temperature (b), heat release (c) and flame index (d) in the longitudinal section passing through the centre of the injection hole at time t5.

下载 (4MB)
13. Fig. 12. Fields of mass fractions of H2 (a), O2 (b), OH (c), H2O (d) in cross sections x / h = 0 (1), 2 (2), 4 (3), 6 (4), 8 (5), 10 (6) and 12 (7) at time t5.

下载 (2MB)
14. Fig. 13. Completeness of combustion: a - of hydrogen and b - of oxygen along the channel length. Curves 1-6 correspond to the time moments t1-t6.

下载 (1011KB)

版权所有 © Russian Academy of Sciences, 2025