The formation of aerosol haze in the atmosphere

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Atmospheric aerosol containing sulfates affects air quality on a regional scale and the climate on a global scale. For example, in the northern part of the North China Plain, an agglomeration with a population of about half a billion people is systematically exposed to catastrophically rapid pollution by dense haze. In this work, for the first time, evidence is interpreted in favor of the existence of critical atmospheric conditions that enable the extremely rapid formation of sulfates and nitrates in aerosol particles and, in combination with suitable meteorological conditions (temperature, relative humidity, atmospheric stagnation, etc.), lead to the occurrence of aerosol haze. It is shown that sustained and rapid sulfate accumulation in the degenerate-branched regime of a catalytic process involving transition metal ions is possible – at a given air humidity and in an atmosphere polluted with sulfur and nitrogen oxides – only if the ammonia concentration exceeds a certain threshold. At the same time, the rate of nitrate formation also increases, driven by the coupling of sulfate and nitrate formation processes. As a result, the absorption of moisture and ammonia from the air intensifies, ensuring a self-sustaining and rapid increase in the mass concentration of aerosol haze particles in the atmosphere.

作者简介

G. Pronchev

Semenov Federal Research Center for Chemical Physics

Email: pronchev@rambler.ru
Moscow, Russia

V. Azriel

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

V. Akimov

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

E. Ermolova

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

D. Kabanov

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

L. Kolesnikova

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

L. Rusin

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

M. Sevryuk

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

A. Yermakov

Semenov Federal Research Center for Chemical Physics

Moscow, Russia

参考

  1. Andreae M.O., Jones C.D., Cox P.M. // Nature. 2005. V. 435. № 7046. P. 1187. https://doi.org/10.1038/nature03671
  2. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken: John Wiley & Sons, 2016.
  3. Еганов А.А., Кардонский Д.А., Сулименков И.В. и др. // Хим. физика. 2023. Т. 42. № 4. С. 81. https://doi.org/10.31857/S0207401X23040064
  4. Ларин И.К. // Хим. физика. 2023. Т. 42. № 1. С. 84. https://doi.org/10.31857/S0207401X23010077
  5. Зеленов В.В., Апарина Е.В. // Хим. физика. 2024. Т. 43. № 6. C. 53. https://doi.org/10.31857/S0207401X24060069
  6. Ларин И.К., Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 6. C. 64. https://doi.org/10.31857/S0207401X24060074
  7. Ларин И.К., Белякова Т.И., Прончев Г.Б., Трофимова Е.М. // Хим. физика. 2025. Т. 44. № 5. C. 40.
  8. Ларин И.К., Прончев Г.Б., Трофимова Е.М. // Хим. физика. 2025. Т. 44. № 5. С. 49.
  9. Прончев Г.Б., Ермаков А.Н. // Оптика атмосферы и океана. 2025. Т. 38. № 3. C. 178. https://doi.org/10.15372/AOO20250303
  10. Ларин И.К. // Хим. физика. 2025. Т. 44. № 6. C. 109. https://doi.org/10.31857/S0207401X25060097
  11. Pronchev G.B., Yermakov A.N. // Russ. J. Phys. Chem. B. 2025. V. 19. № 3. P. 770. https://doi.org/10.1134/S1990793125700460
  12. Wang Y., Zhang Q., Jiang J. et al. // J. Geophys. Res. Atmos. 2014. V. 119. № 17. P. 10425. https://doi.org/10.1002/2013JD021426
  13. Liu T., Clegg S.L., Abbatt J.P.D. // Proc. Natl. Acad. Sci. 2020. V. 117. № 3. P. 1354. https://doi.org/10.1073/pnas.1916401117
  14. Liu P., Ye C., Xue C. et al. // Atmos. Chem. Phys. 2020. V. 20. № 7. P. 4153. https://doi.org/10.5194/acp-20-4153-2020
  15. Виноградова А.А., Губанова Д.П., Иорданский М.А., Скороход А.И. // Оптика атмосферы и океана. 2022. Т. 35. № 6. C. 436. https://doi.org/10.15372/AOO20220602
  16. Яушева Е.П., Гладких В.А., Камардин А.П., Шмаргунов В.П. // Оптика атмосферы и океана. 2023. Т. 36. № 9. C. 711. https://doi.org/10.15372/AOO20230902
  17. Sirois A., Barrie L.A. // J. Geophys. Res. Atmos. 1999. V. 104. № 9. P. 11599. https://doi.org/10.1029/1999JD900077
  18. Liu M., Song Y., Zhou T. et al. // Geophys. Res. Lett. 2017. V. 44. № 10. P. 5213. https://doi.org/10.1002/2017GL073210
  19. Zheng B., Zhang Q., Zhang Y. et al. // Atmos. Chem. Phys. 2015. V. 15. № 4. P. 2031. https://doi.org/10.5194/acp-15-2031-2015
  20. Brimblecombe P. The Big Smoke: A History of air pollution in London since medieval time. New York: Routledge, 2011.
  21. Grieken R.W. Optimization and environmental application of TW-EPMA for single particle analysis. Antwerpen: Antwerpen University, 2005.
  22. Wang G., Zhang R., Gomez M.E. et al. // Proc. Natl. Acad. Sci. 2016. V. 113. № 48. P. 13630. https://doi.org/10.1073/pnas.1616540113
  23. Fountoukis C., Nenes A. // Atmos. Chem. Phys. 2007. V. 7. № 17. P. 4639. https://doi.org/10.5194/acp-7-4639-2007
  24. Wexler A.S., Clegg S.L. // J. Geophys. Res. Atmos. 2002. V. 107. № D14. P. 3173. https://doi.org/10.1029/2001JD000451
  25. Ермаков А.Н., Алоян А.Е., Арутюнян В.О. // Метеорология и гидрология. 2021. № 11. C. 56. https://doi.org/10.52002/0130-2906-2021-11-56-63
  26. Mozurkewich M. // Atmos. Environ. Part A. Gen. Top. 1993. V. 27. № 2. P. 261. https://doi.org/10.1016/0960-1686(93)90356-4
  27. Jacobson M.Z., Tabazadeh A., Turco R.P. // J. Geophys. Res. Atmos. 1996. V. 101. № D4. P. 9079. https://doi.org/10.1029/96JD00348
  28. Swietlicki E., Hansson H.C., Hämeri K. et al. // Tellus, B: Chem. Phys. Meteorol. 2008. V. 60. № 3. P. 432. https://doi.org/10.1111/j.1600-0889.2008.00350.x
  29. Petters M.D., Kreidenweis S.M. // Atmos. Chem. Phys. 2007. V. 7. № 8. P. 1961. https://doi.org/10.5194/acp-7-1961-2007
  30. Berresheim H., Jaeschke W. // J. Atmos. Chem. 1986. V. 4. № 3. P. 311. https://doi.org/10.1007/BF00053807
  31. Прончев Г.Б., Ермаков А.Н. // Хим. физика. 2024. Т. 43. № 10. С. 89. https://doi.org/10.31857/S0207401X24100089
  32. Ibusuki T., Takeuchi K. // Atmos. Environ. 1987. V. 21. № 7. P. 1555. https://doi.org/10.1016/0004-6981(87)90317-9
  33. Feichter J., Kjellström E., Rodhe H. et al. // Atmos. Environ. 1996. V. 30. № 10–11. P. 1693. https://doi.org/10.1016/1352-2310(95)00394-0
  34. Alexander B., Park R.J., Jacob D.J., Gong S. // J. Geophys. Res. Atmos. 2009. V. 114. № D2. P. 1. https://doi.org/10.1029/2008JD010486
  35. He P., Alexander B., Geng L. et al. // Atmos. Chem. Phys. 2018. V. 18. № 8. P. 5515. https://doi.org/10.5194/acp-18-5515-2018
  36. McCabe J.R., Savarino J., Alexander B., Gong S., Thiemens M.H. // Geophys. Res. Lett. 2006. V. 33. № 5. P. 10. https://doi.org/10.1029/2005GL025164
  37. Martin L.R., Hill M.W. // Atmos. Environ. 1987. V. 21. № 10. P. 2267. https://doi.org/10.1016/0004-6981(87)90361-1
  38. Ермаков А.Н. // Кинетика и катализ. 2022. Т. 63. № 2. C. 178. https://doi.org/10.31857/S0453881122020022
  39. Баранова Р.Б., Бугаенко Л.Т., Иванина И.Н., Костенко Н.Н., Стародубцев Г.А. // Химия высоких энергий. 1982. Т. 16. № 3. C. 234.
  40. Ермаков А.Н. // Кинетика и катализ. 2023. Т. 64. № 1. C. 86. https://doi.org/10.31857/S045388112301001X
  41. Brandt C., van Eldik R. // Chem. Rev. 1995. V. 95. № 1. P. 119. https://doi.org/10.1021/cr00033a006
  42. Herrmann H., Ervens B., Jacobi H.W. et al. // J. Atmos. Chem. 2000. V. 36. № 3. P. 231. https://doi.org/10.1023/A:1006318622743
  43. Berglund J., Fronaeus S., Elding L.I. // Inorg. Chem. 1993. V. 32. № 21. P. 4527. https://doi.org/10.1021/ic00073a011
  44. Wang H. The chemistry of nitrate radical (NO3) and dinitrogen pentoxide (N2O5) in Beijing. Singapore: Springer Nature Singapore Pte Ltd, 2021. https://doi.org/10.1007/978-981-15-8795-5
  45. Schwartz S.E. // SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations / Ed. Calvert J.G. Boston: Butterworth, 1984. P. 173.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025