Optimized frequency recovery of the satellite quantum signal
- Authors: Chernov A.N.1,2,3, Khmelev A.V.1,2,3, Kurochkin V.L.1,2,3,4
 - 
							Affiliations: 
							
- Moscow Institute of Physics and Technology
 - International Center for Quantum Optics and Quantum Technologies
 - QSpace Technologies LLC
 - MISIS National University of Science and Technology
 
 - Issue: Vol 88, No 6 (2024)
 - Pages: 975-980
 - Section: Luminescence and Laser Physics
 - URL: https://edgccjournal.org/0367-6765/article/view/654667
 - DOI: https://doi.org/10.31857/S0367676524060206
 - EDN: https://elibrary.ru/PFLRJW
 - ID: 654667
 
Cite item
Abstract
We developed the frequency recovery method of laser pulses necessary for synchronizing quantum states transmitted from a satellite and registered at a ground station. Experimental modeling of a quantum key distribution session between a satellite and a ground station is also considered. The data obtained during the experiment were used to test the method of recovering the repetition frequency.
Full Text
About the authors
A. N. Chernov
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC
							Author for correspondence.
							Email: chernov.an@phystech.edu
				                					                																			                												                	Russian Federation, 							Dolgoprudny; Moscow; Moscow						
A. V. Khmelev
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC
														Email: chernov.an@phystech.edu
				                					                																			                												                	Russian Federation, 							Dolgoprudny; Moscow; Moscow						
V. L. Kurochkin
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC; MISIS National University of Science and Technology
														Email: chernov.an@phystech.edu
				                					                																			                												                	Russian Federation, 							Dolgoprudny; Moscow; Moscow; Moscow						
References
- Wootters W.K., Zurek W.H. // Nature. 1982. V. 299. No. 5886. P. 802.
 - Курочкин В.Л., Кривякин Г.К., Зверев А.В. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 10; Kurochkin V.L., Krivyakin G.K., Zverev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 5.
 - Курочкин В.Л., Неизвестный И.Г. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 195; Kurochkin V.L., Neizvestnyj I.G. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 173.
 - Курочкин В.Л., Коляко А.В. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 5; Kurochkin V.L., Kolyako A.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 1.
 - Хмелев А.В., Дуплинский А.В., Майборода В.Ф. и др. // Письма в ЖТФ. 2021. Т. 47. № 17. С. 46; Khmelev A.V., Duplinsky A.V., Mayboroda V.F. et al. // Tech. Phys. Lett. 2021. V. 47. No. 12. P. 858.
 - Azuma K., Economou S.E., Elkouss D. et al. // arXiv:2212.10820. 2022.
 - Liao S.K., Cai W.Q., Liu W.Y. et al. // Nature. 2017. V. 549. No. 7670. P. 43.
 - Wang C.Z., Li Y., Cai W.Q. et al. // Opt. Express. 2021. V. 29. No. 19. P. 29595.
 - Wang C., Li Y., Cai W. et al. // Appl. Opt. 2021. V. 60. No. 16. P. 4787.
 - Vallone G., Marangon D.G., Canale M. et al. // Phys. Rev. A. 2015. V. 91. No. 4. Art. No. 042320.
 - Bienfang J.C., Gross A.J., Mink A. et al. // Opt. Express. 2004. V. 12. No. 9. P. 2011.
 - Khmelev A.V., Ivchenko E.I., Miller A.V. et al. // Entropy. 2023. V. 25. No. 4. Art. No. 670.
 - https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.cumulative_trapezoid.html
 
Supplementary files
				
			
					
						
						
						
						
									







