The Migdal jump under the quantum Hall regime
- Авторлар: Vankov A.B.1
-
Мекемелер:
- Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
- Шығарылым: Том 88, № 2 (2024)
- Беттер: 190-195
- Бөлім: New Materials and Technologies for Security Systems
- URL: https://edgccjournal.org/0367-6765/article/view/654748
- DOI: https://doi.org/10.31857/S0367676524020048
- EDN: https://elibrary.ru/RTQORV
- ID: 654748
Дәйексөз келтіру
Аннотация
In two-dimensional electron systems at large values of the Wigner-Seits parameter rs and in the quantum Hall effect mode, the distribution function of particles over Landau levels was calculated. It turned out that at small filling factors, the tail of the distribution function and the magnitude of the Migdal jump are qualitatively different from the case of a Fermi liquid in a zero magnetic field. Due to the presence of the cyclotron energy gap, the Fermi-liquid distortion of the distribution function is significantly suppressed.
Толық мәтін

Авторлар туралы
A. Vankov
Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: vankov@issp.ac.ru
Ресей, Chernogolovka
Әдебиет тізімі
- Мигдал А.Б. // ЖЭТФ. 1957. Т. 32. № 2. С. 399; Migdal A.B. // Sov. JETP. 1957. V. 5. No. 2. P. 333.
- Galitski V.M., Das Sarma S. // Phys. Rev. B. 2004. V. 70. Art. No. 035111.
- Burkard G., Loss D., Sukhorukov E.V. // Phys. Rev. B. 2000. V. 61. No. 24. P. 16303.
- Drummond N.D., Needs R.J. // Phys. Rev. B. 2009. V. 79. Art. No. 085414.
- Кукушкин И.В. // ЖЭТФ. 2022. Т. 162. P. 480.
- Бычков Ю.А., Колесников А.В. // ЖЭТФ. 1995. Т. 107. С. 1933; Bychkov Yu.A., Kolesnikov A.V. // JETP. 1995. V. 80. No. 6. P. 1069.
- Ваньков А.Б. // Письма в ЖЭТФ. 2023. Т. 117. № 5. С. 356.
- Kallin C., Halperin B.I. // Phys. Rev. B. 1984. V. 30. No. 10. P. 5655.
- Ваньков А.Б., Кукушкин И.В. // Письма в ЖЭТФ. 2021. Т. 113. № 2. P. 112.
Қосымша файлдар
Қосымша файлдар
Әрекет
1.
JATS XML
2.
Fig. 1. Examples of many-electron configurations contributing to the ground state of the EACH system at ν = 1 (a). Example of the calculated electron distribution function on UL at n = 1, rc = 5, performed by the TD method. Discrete parameters are indicated. The inset shows f (n) on a logarithmic scale (b). Filling numbers of the zero and first UL as a function of the parameter rs calculated at different values of the parameter Δmax and fixed NS and NLL (c)
Жүктеу (423KB)
3.
Fig. 2. Dependence of the decrement decay of the distribution function f(E) on the filling factor at different rs (a). Dependence of the fermi-liquid contribution to the value of the Migdal jump (1-Z) on ν at different rs (b)
Жүктеу (136KB)
4.
Fig. 3. Calculated histogram of the specific weight of multiplasmonic components included in the ground state structure at ν = 1 (a). The same for the ground state ν = 1/3. The contribution from combinations of magnetoplasmons with charge density waves MF(k) × CDW(k) dominates (b)
Жүктеу (177KB)
