Magnetic-controlled composite elastomer based on polydimethylsiloxane with a porous structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Magnetic elastomers based on polydimethylsiloxane polymer with a filler of barium hexaferrite microparticles with a homogeneous and porous microstructure have been obtained. The microstructure, magnetic and mechanical properties of the obtained samples were studied. The filler leaching method used in the work makes it possible to obtain magnetic elastomers with a porosity of about 58%. It is shown that the porous microstructure leads to a significant decrease in the Young’s modulus of the samples from 0.63 MPa (homogeneous) to 27 kPa (porous) and doesn’t produce any significant changes in the magnetic properties of the sample.

Sobre autores

A. Amirov

Baltic Federal University

Autor responsável pela correspondência
Email: amiroff_a@mail.ru
Russia, 236041, Kaliningrad

A. Kaminsky

Lomonosov Moscow State University, Faculty of Physics

Email: amiroff_a@mail.ru
Russia, 119991, Moscow

E. Arkhipova

Peter the Great St. Petersburg Polytechnic University; Ioffe Physical-Technical Institute of the Russian Academy of Sciences

Email: amiroff_a@mail.ru
Russia, 195251, St. Petersburg; Russia, 194021, St. Petersburg

N. Cherkasova

South Ural State University (National Research University)

Email: amiroff_a@mail.ru
Russia, 454080, Chelyabinsk

A. Tovpinets

Baltic Federal University

Email: amiroff_a@mail.ru
Russia, 236041, Kaliningrad

V. Leucine

Baltic Federal University

Email: amiroff_a@mail.ru
Russia, 236041, Kaliningrad

A. Pyatakov

Lomonosov Moscow State University, Faculty of Physics

Email: amiroff_a@mail.ru
Russia, 119991, Moscow

V. Zhivulin

South Ural State University (National Research University)

Email: amiroff_a@mail.ru
Russia, 454080, Chelyabinsk

V. Rodionova

Baltic Federal University

Email: amiroff_a@mail.ru
Russia, 236041, Kaliningrad

Bibliografia

  1. Eduok U., Faye O., Szpunar J. // Progr. Org. Coat. 2017. V. 111. P. 124.
  2. Kolesnikova V.G., Makarova L.A., Omelyanchik A.S. et al. // J. Magn. Magn. Mater. 2022. V. 558. Art. No. 169506.
  3. Степанов Г.В., Крамаренко Е.Ю., Перов Н.С. и др. // Вест. Перм. нац. иссл. политех. ун-та. Механика. 2013. № 4. С. 106.
  4. Li J., Liu X., Crook J.M. et al. // Colloids Surf. B. 2017. V. 159. P. 386.
  5. Dunn K.W., Hall P.N., Khoo C.T.K. // Br. J. Plast. Surg. 1992. V. 45. No. 4. P. 315.
  6. Chen J.S., Liu T.Y., Tsou H.M. et al. // J. Polymer Res. 2017. V. 24. No. 5. P. 1.
  7. Kim Y., Parada G.A., Liu S., Zhao X. // Sci. Robot. 2019. V. 4. No. 33. Art. No. eaax7329.
  8. Xu T., Zhang J., Salehizadeh M. et al. // Sci. Robot. 2019. V. 4. No. 29. Art. No. eaav4494.
  9. Zhao X., Li L., Li B. et al. // J. Mater. Chem. A. 2014. V. 2. No. 43. P. 18281.
  10. Choi S.J., Kwon T.H., Im H. et al. // ACS Appl. Mater. Interfaces. 2011. V. 3. No. 12. P. 4552.
  11. Li J., Liu X., Crook J.M. et al. // Colloids Surf. B. 2017. V. 159. P. 386.
  12. Cha K.J., Kim D.S. // Biomed. Microdevices. 2011. V. 13. No. 5. P. 877.
  13. Duan S., Yang K., Wang Z. et al. // ACS Appl. Mater. Interfaces. 2016. V. 8. No. 3. P. 2187.
  14. Iglio R., Mariani S., Robbiano V. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. No. 16. P. 13877.
  15. Pullar R.C. // Progr. Mater. Sci. 2012. V. 57. No. 7. P. 1191.
  16. Vinnik D.A., Zherebtsov D.A., Mashkovtseva L.S. et al. // Cryst. Growth Des. 2014. V. 14. No. 11. P. 5834.
  17. Ribeiro C., Costa C.M., Correia D.M. et al. // Nature Protocols. 2018. V. 13. No. 4. P. 681.
  18. González-Rivera J., Iglio R., Barillaro G. et al. // Polymers. 2018. V. 10. No. 6. P. 616.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (609KB)
3.

Baixar (1MB)
4.

Baixar (114KB)
5.

Baixar (1MB)

Declaração de direitos autorais © А.А. Амиров, А.С. Каминский, Е.А. Архипова, Н.А. Черкасова, А.О. Товпинец, В.Н. Лейцин, А.П. Пятаков, В.Е. Живулин, В.В. Родионова, 2023