Modern technologies to produce radionuclides for nuclear medicine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We discussed nuclear technologies to produce radioactive isotopes, with a focus on radionuclides used as radiopharmaceuticals in novel methods of cancer diagnosis and radionuclide therapy—theranostics. New target materials and nuclear reactions to produce these radionuclides were considered. The experimental and theoretical results of excitation functions of reactions (p, xn) studies in energy range 6–80 MeV for medium mass nuclear systems to produce radionuclides: scandium, technetium, antimony, terbium are presented. These radionuclides are promising for their use in nuclear medicine methods for diagnostics, therapy and theranostics.

Sobre autores

V. Zherebchevsky

Saint Petersburg State University

Autor responsável pela correspondência
Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

I. Alekseev

Khlopin Radium Institute

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

N. Maltsev

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

V. Petrov

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

N. Prokofiev

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

E. Zemlin

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

S. Torilov

Saint Petersburg State University

Email: v.zherebchevsky@spbu.ru
Russia, Saint-Petersburg

Bibliografia

  1. https://www.who.int/news-room/fact-sheets/detail/ cancer.
  2. Жеребчевский В.И. // СПбГУ. 2020. № 6(3926). С. 29.
  3. Sharp P.F., Gemmell H.G., Murray A.D. Practical nuclear medicine. 3rd ed. London: Springer-Verlag, 2005. 382 p.
  4. Volterrani D., Erba P.A., Carrió I. et al. Nuclear medicine: methodology and clinical applications. V. 1. Springer, 2019. 1331 p.
  5. Жеребчевский В.И., Алексеев И.Е., Лазарева Т.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 10. С. 1452; Zherebchevsky V.I., Alekseev I.E., Lazareva T.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 10. P. 1128.
  6. Zherebchevsky V., Alekseev I., Krymov E. et al. // Proc. LXX Intern. Conf. “NUCLEUS-2020” (Saint-Petersburg, 2020). P. 9.
  7. Zherebchevsky V., Alekseev I., Lazareva T. et al. // Proc. LXXI Intern. Conf. “NUCLEUS-2021” (Saint Petersburg, 2021). P. 13.
  8. Zherebchevsky V., Alekseev I., Feofilov G. et al. // Proc. LXXII Intern. Conf. “NUCLEUS-2022” (Moscow, 2022). P. 33.
  9. Conti M., Bendriem B. // Clin. Transl. Imaging. 2019. V. 7. P. 139.
  10. Lang C., Habs D., Parodi K., Thirolfa P.G. // JINST. 2014. V. 9. Art. No. P01008.
  11. Gallego Manzano L., Abaline J.M., Acounis S. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2018. V. 912. P. 329.
  12. Rosar F., Buchholz H.-G., Michels S. et al. // EJNMMI Phys. 2020. V. 7. Art. No. 16.
  13. Rosar F., Bohnenberger H., Moon E.S. et al. // Appl. Radiat. Isot. 2021. V. 170. Art. No. 109599.
  14. Khawar A., Eppard E., Sinnes J.P. et al. // Clin. Nucl. Med. 2018. V. 43. P. 486.
  15. Langbein T., Weber W.A., Eiber M. // J. Nucl. Med. 2019. V. 60. No. 9 (Suppl. 2). P. 13S.
  16. Yordanova A., Eppard E., Kürpig S. et al. // Onco. Targets Ther. 2017. V. 10. P. 4821.
  17. Ferrari C., Niccoli Asabella A., Villano C. et al. // BioMed Res. Int. 2015. V. 2015. Art. No. 129764.
  18. https://www.nndc.bnl.gov/nudat.
  19. https://indico.cern.ch/event/689358/book-of-abstracts.pdf.
  20. Müller C., Zhernosekov K., Köster U. et al. // J. Nucl. Med. 2012. V. 53. No. 12. P. 1951.
  21. Baum R.P., Singh A., Benešová M. et al. // Dalton Trans. 2017. V. 46. P. 14638.
  22. Müller C., Vermeulen C., Köster U. et al. // EJNMMI Radiopharm. Chem. 2016. V. 1. Art. No. 5.
  23. Umbricht C.A., Köster U., Bernhardt P. et al. // Sci. Reports. 2019. V. 9. Art. No. 17800.
  24. Borgna F., Haller S., Rodriguez J.M.M. et al. // Eur. J. Nucl. Med. Mol. Imaging. 2022. V. 49. P. 1113.
  25. Baum R.P., Singh A., Kulkarni H.R. et al. // J. Nucl. Med. 2021. V. 62. No. 10. P. 1391.
  26. Gómez-Tejedor G.G., Fuss M.C. Radiation damage in biomolecular systems. Dordrecht, Heidelberg, London, New York: Springer, 2012. 524 p.
  27. The supply of medical radioisotopes: review of potential molybdenum-99/technetium-99m production technologies. Report OECD Nuclear Energy Agency, 2010.
  28. Martinez Palenzuela Y., Barozier V., Chevallay E. et al. // Front. Med. 2021. V. 8. Art. No. 689281.
  29. https://www.prismap.eu/about/project.
  30. Жеребчевский В.И., Алексеев И.Е., Гриднев К.А. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 8. С. 975; Zherebchevsky V.I., Alekseev I.E., Gridnev K.A. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 8. P. 888.
  31. van der Meulen N.P., Hasler R., Talip Z. et al. // Molecules. 2020. V. 25. Art. No. 4706.
  32. Filosofov D.V., Loktionova N.S., Rösch F. // Radiochim. Acta. 2010. V. 98. No. 3. P. 149.
  33. Alliot C., Kerdjoudj R., Michel N. et al. // Nucl. Med. Biol. 2015. V. 42. No. 6. P. 524.
  34. Guertin A., Nigron E., Sitarz M. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 355.
  35. Pupillo G., Mou L., Martini P. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 341.
  36. Fontana A., Calzaferri S., Canton L. et al. // Proc. 15th Intern. Conf. NRM. V. 1. (Varenna, 2018). P. 349.
  37. Koning A.J., Delaroche J.P. // Nucl. Phys. A. 2003. P. 231.
  38. Kalbach C. // J. Physics G. 1999. V. 25. P. 75.
  39. Koning A.J., Hilaire S., Duijvestijn M.C. // Proc. Int. Conf. ND 2007. (Nice, 2007). P. 211.
  40. Otuka N., Dupont E., Semkova V. et al. // Nucl. Data Sheets. 2014. V. 120. P. 272.
  41. De Waal T.J., Peisach M., Pretorius R. // J. Inorg. Nucl. Chem. 1971. V. 33. P. 2783.
  42. Krajewski S., Cydzik I., Abbas K. et al. // Radiochim. Acta. 2013. V. 101. P. 333.
  43. Carzaniga T.S., Auger M., Braccini S. et al. // Appl. Radiat. Isot. 2017. V. 129. P. 96.
  44. Sevior M.E., Mitchell L.W., Anderson M.R. et al. // Aust. J. Phys. 1983. V. 36. P. 463.
  45. Liang H., Han Y., Shen Q. // Nucl. Instrum. Meth. Phys. Res. B. 2011. V. 269. P. 597.
  46. https://www-nds.iaea.org/medical.
  47. Kalbach C. // Phys. Rev. C. 2005. V. 71. Art. No. 034606.
  48. Blann M. // Nucl. Phys. A. 1973. V. 213. P. 570.
  49. Qaim S.M., Sudár S., Scholten B. et al. // Appl. Radiat. Isot. 2014. V. 85. P. 101.
  50. Tárkányi F., Hermanne A., Takács S. et al. // J. Radioanalyt. Nucl. Chem. 2013. V. 298. P. 1385.
  51. Avrigeanu M., Rochman D., Koning A.J. et al. // Eur. Phys. J. A. 2022. V. 58. Art. No. 3.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (623KB)
3.

Baixar (133KB)
4.

Baixar (117KB)
5.

Baixar (190KB)
6.

Baixar (64KB)
7.

Baixar (186KB)
8.

Baixar (185KB)
9.

Baixar (199KB)
10.

Baixar (55KB)
11.

Baixar (87KB)

Declaração de direitos autorais © В.И. Жеребчевский, И.Е. Алексеев, Н.А. Мальцев, В.В. Петров, Н.А. Прокофьев, Е.О. Землин, С.Ю. Торилов, 2023