Spatial coherence of exciton-polaritoniс Bose‒Einstein condensates

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Dynamics of exciton-polariton Bose‒Einstein condensate in an optical microcavity is considered. A novel version of stochastic Gross‒Pitaevsky equation for description of condensate evolution under non-Markovian interaction with environment is proposed. Using the proposed version, analysis of condensate dynamics for various temperatures is carried out. The phase transition from a homogeneous to fragmented condensate state near temperature of 15 K is found. This phase transition is accompanied by drop of condensate density and decrease of correlation length. It is found that correlation length oscillates with time for the temperature of 10 K. The results obtained indicate the necessity to take into account non-Markovianity of condensate interaction with the excitonic reservoir.

Sobre autores

N. Kuznetsova

Ilyichev Pacific Oceanological Institute of the Far East Branch of the Russian Academy of Sciences

Email: makarov@poi.dvo.ru
Rússia, Vladivostok

D. Makarov

Ilyichev Pacific Oceanological Institute of the Far East Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: makarov@poi.dvo.ru
Rússia, Vladivostok

N. Asriyan

Dukhov Research Institute of Automatics

Email: makarov@poi.dvo.ru
Rússia, Moscow

A. Elistratov

Dukhov Research Institute of Automatics

Email: makarov@poi.dvo.ru
Rússia, Moscow

Yu. Lozovik

Institute of Spectroscopy of the Russian Academy of Sciences; Higher School of Economics

Email: makarov@poi.dvo.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Kasprzak J., Richard M., Kundermann S. et al. // Nature. 2006. V. 443. P. 409.
  2. Balili R., Hartwell V., Snoke D. et al. // Science. 2007. V. 316. No. 5827. P. 1007.
  3. Deng H., Haug H., Yamamoto Y. // Rev. Mod. Phys. 2010. V. 82. No. 2. P. 1489.
  4. Тимофеев В.Б. // Физ. и техн. полупроводников. 2012. Т. 46. № 7. С. 865; Timofeev V.B. // Semiconductors. 2012. V. 46. No. 7. P. 865.
  5. Воронова Н.С., Лозовик Ю.Е. // Письма в ЖЭТФ. 2018. Т. 108. № 12. С. 805; Voronova N.S., Lozovik Yu.E. // JETP Lett. 2018. V. 108. № 12. P. 791.
  6. Гаврилов С.С. // УФН. 2020. Т. 190. № 2. С. 137; Gavrilov S.S. // Phys. Usp. 2020. V. 63. No. 2. P. 123.
  7. Седова И.Е., Седов Е.С., Аракелян С.М., Кавокин А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1712; Sedova I.E., Sedov E.S., Arakelian S.M., Kavokin A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1453.
  8. Сейсян Р.П., Ваганов С.А. // ФТП. 2020. Т. 54. № 4. С. 327; Seisyan R.P., Vaganov S.A. // Semiconductors. 2020. V. 54. P. 399.
  9. Васильева О.Ф., Зинган А.П., Васильев В.В. // Опт. и спектроск. 2022. Т. 130. № 12. С. 1840; Vasilieva O.F., Zingan A.P., Vasiliev V.V. // Opt. Spectrosc. 2022. V. 130. No. 12. P. 1567.
  10. Chen X., Alnatah H., Mao D. // Nano Lett. 2023. V. 23. No. 20. P. 9538.
  11. Лозовик Ю.Е., Семенов А.Г. // Теор. и матем. физ. 2008. № 2. С. 372; Lozovik Yu.E., Semenov A.G. // Theor. Math. Phys. 2008. No. 2. P. 154.
  12. Немировский С.К. // Квант. электрон. 2020. Т. 50. № 6. С. 556; Nemirovskii S.K. // Quantum Electron. V. 49. No. 5. P. 436.
  13. Лозовик Ю.Е., Семенов А.Г., Вилландер М. // Письма в ЖЭТФ. 2006. Т. 84. № 3. С. 176; Lozovik Yu.E., Semenov A.G., Willander M. // JETP Lett. 2006. V. 84. No. 3. P. 146.
  14. Лозовик Ю.Е., Семенов А.Г. // Письма в ЖЭТФ. 2007. Т. 86. № 1. С. 30; Lozovik Y.E., Semenov A.G. // JETP Lett. 2007. V. 86. P. 28.
  15. Alliluev A.D., Makarov D.V. // J. Russ. Laser. Res. 2022. V. 43. No. 1. P. 71.
  16. De Vega I., Alonso D. // Rev. Mod. Phys. 2017. V. 89. No. 1. Art. No. 015001.
  17. Elistratov A.A., Lozovik Yu.E. // Phys. Rev. B. 2018. V. 97. Art. No. 014525.
  18. Makarov D.V., Elistratov A.A., Lozovik Yu.E. // Phys. Lett. A. 2020. V. 384. Art. No. 126942.
  19. Asriyan N.A., Elistratov A.A., Lozovik Yu.E // Quantum. 2023. V. 7. P. 1144.
  20. De Giorgi M., Ballarini D., Cazzato P. et al. // Phys. Rev. Lett. 2014. V. 112. Art. No. 113602.
  21. Opala A., Pieczarka M., Matuszewski M. // Phys. Rev. B. 2018. V. 98. No. 19. P. 5312.
  22. Tian C., Chen L., Zhang Y. et al. // Nano Lett. 2022. V. 22. No. 7. P. 3026.
  23. Alliluev A.D., Makarov D.V., Asriyan N.A. et al. // Phys. Lett. A. 2022. V. 453. Art. No. 128492.
  24. Alliluev A.D., Makarov D.V., Asriyan N.A. et al. // J. Low Temp. Phys. 2024. V. 214. P. 331.
  25. Deligiannis K., Squizzato D., Minguzzi A., Canet L. // Europhys. Lett. 2020. Art. No. 67004.
  26. Berry M.V. // J. Physics A. 1977. V. 10. No. 12. P. 2083.
  27. Максимов Д.Н., Садреев А.Ф. // Письма в ЖЭТФ. 2008. Т. 86. № 9. С. 584; Maksimov D.N., Sadreev A.F. // JETP Lett. 2008. V. 86. No. 9. P. 584.
  28. Li X. // Phys. Lett. A. 2021. V. 387. Art. No. 127036.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024