Improving length estimation of the secret key in satellite-to-ground quantum channel
- Autores: Ivchenko Е.I.1,2,3,4, Khmelev A.V.1,2,3, Kurochkin V.L.1,2,3,4
-
Afiliações:
- Moscow Institute of Physics and Technology
- International Center for Quantum Optics and Quantum Technologies
- QSpace Technologies LLC
- MISIS National University of Science and Technology
- Edição: Volume 88, Nº 6 (2024)
- Páginas: 981-985
- Seção: Luminescence and Laser Physics
- URL: https://edgccjournal.org/0367-6765/article/view/654668
- DOI: https://doi.org/10.31857/S0367676524060214
- EDN: https://elibrary.ru/PFFVHM
- ID: 654668
Citar
Resumo
We study and optimize the length of the secret sequence depending on the intervals of splitting the communication session between the satellite and the ground station during the quantum key distribution. Due to dynamically changing channel parameters, the proposed technique allows for significant increases in the final key rate and length.
Palavras-chave
Texto integral

Sobre autores
Е. Ivchenko
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC; MISIS National University of Science and Technology
Autor responsável pela correspondência
Email: ivchenko.ei@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow; Moscow
A. Khmelev
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC
Email: ivchenko.ei@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow
V. Kurochkin
Moscow Institute of Physics and Technology; International Center for Quantum Optics and Quantum Technologies; QSpace Technologies LLC; MISIS National University of Science and Technology
Email: ivchenko.ei@phystech.edu
Rússia, Dolgoprudny; Moscow; Moscow; Moscow
Bibliografia
- Gisin N., Ribordy G., Tittel W., Zbinden H. // Rev. Mod. Phys. 2002. V. 74. No. 1. P. 145.
- Кронберг Д.А., Ожигов Ю.И., Чернявский А.Ю. Квантовая информатика и квантовый компьютер: учебное пособие. М.: МАКС Пресс, 2011. 64 с.
- Bennett C.H., Brassard G. // arXiv:2003.06557. 2020.
- Shor P.W., Preskill J. // Phys. Rev. Lett. 2000. V. 85. No. 2. P. 441.
- Курочкин В.Л., Кривякин Г.К., Зверев А.В. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 10; Kurochkin V.L., Krivyakin G.K., Zverev A.V. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 5.
- Курочкин В.Л., Неизвестный И.Г. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 195; Kurochkin V.L., Neizvestnyj I.G. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 173.
- Lucamarini M., Yuan Z.L., Dynes J.F., Shields A.J. // Nature. 2018. V. 557. No. 7705. P. 400.
- Курочкин В.Л., Коляко А.В. // Изв. РАН. Сер. физ. 2016. Т. 80. № 1. С. 5; Kurochkin V.L., Kolyako A.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 1. P. 1.
- Liao S.K., Cai W.Q., Liu W.Y. et al. // Nature. 2017. V. 549. No. 7670. P. 43.
- Khmelev A.V., Ivchenko E.I., Miller A.V. et al. // Entropy. 2023. V. 25. No. 4. Art. No. 670.
- Ma X., Qi B., Zhao Y., Lo H.K. // Phys. Rev. A. 2005. V. 72. No. 1. Art. No. 012326.
Arquivos suplementares
