Klyshko method for analog photodetectors and absolute measurement of photon numbers

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A modification of the Klyshko method for absolute calibration of analog photodetectors is considered. It is shown that the photocurrent distribution of an analog detector can be approximated by convolution of the Poisson distribution of the number of photoelectrons with a function describing single photopulses, while the number of photons incident on the detector can be determined from the statistical properties of biphoton radiation. The ratio of the number of photoelectrons to the number of photons gives the efficiency of an analog photodetector, which can be used for measuring the intensity of radiation incident on the detector in units of photon numbers.

全文:

受限制的访问

作者简介

P. Prudkovsky

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: vysogota@gmail.com
俄罗斯联邦, Moscow

D. Safronenkov

Lomonosov Moscow State University

Email: vysogota@gmail.com
俄罗斯联邦, Moscow

G. Kitaeva

Lomonosov Moscow State University

Email: vysogota@gmail.com
俄罗斯联邦, Moscow

参考

  1. Клышко Д.Н. // Квант. электроника. 1980. Т. 7. № 9. С. 1932; Klyshko D.N. // Sov. J. Quantum Electron. 1980. V. 10. № 9. P. 1112.
  2. Малыгин А.А., Пенин А.Н., Сергиенко А.В. // Письма в ЖЭТФ. 1981. Т. 33. № 10. С. 493; Malygin A.A., Penin A.N., Sergienko A.V. // JETP Lett. 1981. V. 33. No. 10. P. 477.
  3. Polyakov S.V., Migdall A.L. // Opt. Express. 2007. V. 15. No. 4. P. 1390.
  4. Исхаков Т.Ш., Лопаева Е.Д., Пенин А.Н. и др. // Письма в ЖЭТФ. 2008. Т. 88. № 10. С. 757; Iskhakov T.S., Lopaeva E.D., Penin A.N. et al. // JETP Lett. 2008. V. 88. No. 10. P. 660.
  5. Brida G., Genovese M., Ruo-Berchera I. et al. // J. Opt. Soc. Amer. B. 2006. V. 23. No. 10. P. 2185.
  6. Brida G., Chekhova M., Genovese M., Ruo-Berchera I. // Opt. Express. 2008. V. 16. No. 17. P. 12550.
  7. Brida G., Chekhova M., Genovese M. et al. // J. Mod. Optics. 2009. V. 56. No. 2—3. P. 401.
  8. Avella A., Ruo-Berchera I., Degiovanni I.P. et al. // Opt. Letters. 2016. V. 41. No. 8. P. 1841.
  9. Chirikov-Zorin I., Fedorko I., Menzione A. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2001. V. 456. P. 310.
  10. Dossi R., Ianni A., Ranucci G., Smirnov O. Ju. // Nucl. Instrum. Meth. Phys. Res. A. 2000. V. 451. P. 623.
  11. Degtiarenko P. // Nucl. Instrum. Meth. Phys. Res. A. 2017. V. 872. P. 1.
  12. Takahashi M., Inome Y., Yoshii S. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2018. V. 894. P. 1.
  13. Cahall C., Nicolich K.L., Islam N.T. et al. // Optica. 2017. V. 4. No. 12. P. 1534.
  14. Endo M., Sonoyama T., Matsuyama M. et al. // Opt. Express. 2021. V. 29. P. 11728.
  15. Prudkovskii P., Leontyev A., Kuznetsov K., Kitaeva G. // Sensors. 2021. V. 21. P. 4964.
  16. Prudkovskii P.A., Safronenkov D.A., Kitaeva G.Kh. // Opt. Letters. 2022. V. 47. № 18. P. 4842.
  17. Sempere-Llagostera S., Thekkadath G.S., Patel R.B. et al. // Opt. Express. 2022. V. 30. P. 3138.
  18. Kalousis L.N. // J. Instrumentation. 2023. V. 18. P. 07016.
  19. Клышко Д.Н. Фотоны и нелинейная оптика. Москва: Наука, 1980.
  20. Федоров М.В. // Изв. РАН. Cер. физ. 2016. Т. 80. № 7. С. 830; Fedorov M.V. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 7. P. 755.
  21. Arahata M., Mukai Y., Cao B. et al // J. Opt. Soc. Amer. B. 2021. V. 38. No. 6. P. 1934.
  22. Resch K.J., Lundeen J.S., Steinberg A.M. // Phys. Rev. A. 2001. V. 63. Art. No. 020102(R).
  23. Kim Y.-H., Grice W.P. // Phys. Rev. A. 2003. V. 67. Art. No. 065802.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of the experimental setup: 1 - diode laser with a wavelength of 405 nm; 2 - Faraday insulator; 3 - half-wave plate; 4 - short-wave filter (450 nm); 5, 11 - quartz lenses; 6 - nonlinear BiBO crystal; 7 - long-wave filter (600 nm); 8 - beam splitter; 9, 10 - narrowband filters (800 ± 10 and 840 ± 40 nm), 12, 13 - multimode optical fibre (62.5 and 50 µm); 14, 15 - photodetectors; 16 - electronic registration unit

下载 (49KB)
3. Fig. 2. Distributions of the mean value of the photocavity photodetector (a) and photomultiplier tube (b) obtained at different values of the pump laser emission power: 0 (1); 1.2 (2); 3.46 mW (3)

下载 (305KB)
4. Fig. 3. The result of approximation of the FES photocurrent distribution at the pump laser power P = 1.2 mW. The contribution to the full distribution of functions corresponding to the registration of different number of single photocounts is shown separately

下载 (145KB)
5. Fig. 4. Dependence of the number A of single photocounts of the PES obtained from approximation of the distributions of photocurrent values by formula (4) on the number a of photons falling on the PES obtained by measuring the normalised correlation function of the scattered radiation (points) and the result of its approximation by a linear dependence (solid line)

下载 (59KB)

版权所有 © Russian Academy of Sciences, 2024