O ZADAChE UPRAVLENIYa NELINEYNOY SISTEMOY POSREDSTVOM DISKRETNOGO UPRAVLENIYa V USLOVIYaKh VOZDEYSTVIYa POMEKhI
- Authors: Shchelchkov K.A1
 - 
							Affiliations: 
							
- Удмуртский государственный университет
 
 - Issue: Vol 60, No 1 (2024)
 - Pages: 126-134
 - Section: Articles
 - URL: https://edgccjournal.org/0374-0641/article/view/649571
 - DOI: https://doi.org/10.31857/S0374064124010106
 - EDN: https://elibrary.ru/RRAGXQ
 - ID: 649571
 
Cite item
Abstract
Рассматривается задача стабилизации в нуль в условиях воздействия помехи в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компактом. Целью управления, т.е. целью  преследователя, является приведение, в рамках конечного времени, траектории в любую  наперёд заданную окрестность нуля вне зависимости от действий помехи. Для построения  управления преследователю известны только фазовые координаты в некоторые дискретные моменты времени и неизвестен выбор управления помехи. В работе получены условия  существования окрестности нуля, из каждой точки которой происходит поимка в указанном смысле. Выигрышное управление строится конструктивно и имеет дополнительное  свойство, указанное в теореме. Кроме того, получена оценка времени поимки, которая  является неуменьшаемой в некотором смысле.
			                References
- Isaacs R. Differential Games. New York, 1965.
 - Blaquiere A., Gerard F., Leitmann G. Quantitative and Qualitative Differential Games. New York, 1969.
 - Красовский Н.Н. Игровые задачи о встречe движений. М., 1970.
 - Friedman A. Differential Games. New York, 1971.
 - Hajek O. Pursuit Games. New York, 1975.
 - Leitmann G. Cooperative and Noncooperative Many-Player Differential Games. Vienna, 1974.
 - Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М., 1974.
 - Двуреченский П.Е., Иванов Г.Е. Алгоритмы вычисления операторов Минковского и их применение в дифференциальных играх // Журн. вычислит. математики и мат. физики. 2014. Т. 54. № 2. С. 224–255.
 - Ушаков В.Н., Ершов А.А. К решению задачи управления с фиксированным моментом окончания // Вестн. Удмуртского ун-та. Математика. Механика. Компьют. науки. 2016. Т. 26. Вып. 4. С. 543–564.
 - Никольский М.С. Одна нелинейная задача преследования // Кибернетика. 1973. № 2. С. 92–94.
 - Пшеничный Б.Н., Шишкина Н.Б. Достаточные условия конечности времени преследования // Прикл. матем. и механика. 1985. Т. 49. № 4. С. 517–523.
 - Сатимов Н. К задаче преследования в нелинейных дифференциальных играх // Кибернетика. 1973. № 3. С. 88–93.
 - Soravia Pierpaolo. ℋ∞ control of nonlinear systems: differential games and viscosity solutions // SIAM J. Contr. and Optimiz. 1996. V. 34. № 3. P. 1071–1097.
 - Natarajan T., Pierre D.A., Naadimuthu E.S., Lee E.S. Piecewise suboptimal control laws for differential games // J. of Math. Analysis and Appl. 1984. V. 104. № 1. P. 189–211.
 - Азамов А.А. Об одном классе нелинейных дифференциальных игр // Мат. заметки. 1981. Т. 30. № 4. С. 619–625.
 - Петров Н.Н. Об управляемости автономных систем // Дифференц. уравнения. 1968. Т. 4. № 4. C. 606–617.
 - Петров Н.Н. Локальная управляемость автономных систем // Дифференц. уравнения. 1968. Т. 4. № 7. C. 1218–1232.
 - Петров Н.Н. Плоские задачи теории управляемости // Вестн. ЛГУ. 1969. № 13. C. 69–78.
 - Щелчков К.А. Об одной нелинейной задаче преследования с дискретным управлением и неполной информацией // Вестн. Удмуртского ун-та. Математика. Механика. Компьют. науки. 2018. Т. 28. Вып. 1. С. 111–118.
 - Shchelchkov K. ???? -capture in nonlinear differential games described by system of order two // Dyn. Games Appl. 2022. V. 12. № 2. P. 662–676.
 - Щелчков К.А. Оценка времени поимки и построение стратегии преследователя в нелинейной дифференциальной игре двух лиц // Дифференц. уравнения. 2022. Т. 58. № 2. P. 260–269.
 
Supplementary files
				
			
					
						
						
						
						
									



