Hopf Bifurcation in a Predator–Prey System with Infection
- 作者: Krishchenko A.P.1,2, Podderegin O.A.1
 - 
							隶属关系: 
							
- Bauman Moscow State Technical University, Moscow, 105005, Russia
 - Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
 
 - 期: 卷 59, 编号 11 (2023)
 - 页面: 1566-1570
 - 栏目: Articles
 - URL: https://edgccjournal.org/0374-0641/article/view/649457
 - DOI: https://doi.org/10.31857/S0374064123110122
 - EDN: https://elibrary.ru/PEXCDU
 - ID: 649457
 
如何引用文章
详细
We study a model of a predator–prey system with possible infection of prey in the form of a three-dimensional system of ordinary differential equations. Using the localization method of compact invariant sets, the existence of an attractor is proved and a compact positively invariant set is found that estimates its position. The conditions for the extinction of populations and the existence of equilibria are found. A numerical method for finding a Hopf bifurcation of the inner equilibrium is proposed and an example of an arising stable limit cycle is given.
作者简介
A. Krishchenko
Bauman Moscow State Technical University, Moscow, 105005, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
														Email: apkri@bmstu.ru
				                					                																			                												                								Москва Россия						
O. Podderegin
Bauman Moscow State Technical University, Moscow, 105005, Russia
							编辑信件的主要联系方式.
							Email: podderegino@gmail.com
				                					                																			                												                								Москва Россия						
参考
- Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
 - Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
 - Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.
 
补充文件
				
			
						
						
						
						
					


