Modeling of electrochemical machining of cylindrical surface by partially insulated tool cathode

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The electrochemical machining (ECM) of the outer surface of rotating cylindrical workpiece by a cylindrical cathode with a partially insulated surface is simulated. It is shown that partial insulation of the surface of tool electrode (TE) allows increasing the localization of the metal dissolution on the desired area of the workpiece surface. The degree of localization is greater, the smaller the non-insulated part of TE and the minimum interelectrode gap at which the machining proceeds. Partial insulation of the TE surface leads to a certain decrease in the ECM productivity; however, the edge effect at the boundary between the insulated and non-insulated parts of TE partially compensates for this drawback.

Sobre autores

V. Volgina

Tula State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: volgin@tsu.tula.ru
Tula, Russia; Moscow, Russia

I. Gnidina

Tula State University

Email: volgin@tsu.tula.ru
Tula, Russia

T. Kabanova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: volgin@tsu.tula.ru
Moscow, Russia

V. Andreev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: volgin@tsu.tula.ru
Moscow, Russia

A. Davydov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: davydov@elchem.ac.ru
Moscow, Russia

Bibliografia

  1. Electrochemical machining, Eds. de Barr, A.E. and Oliver, D.A. London: Macdonald, 1968.
  2. Wilson, J.F. Practice and Theory of Electrochemical Machining, New York: Wiley, 1971.
  3. Румянцев, Е.М., Давыдов, А.Д. Технология электрохимической обработки металлов, Москва: Высшая школа, 1984. [Rumyantsev, E. and Davydov, A., Electrochemical Machining of Metals, Moscow: Mir, 1989.]
  4. Шманев, В.А., Филимошин, В.Г., Каримов, А.Х., Петров, Б.И., Проничев, Н.Д. Технология электрохимической обработки деталей в авиадвигателестроении. М.: Машиностроение, 1986. [Shmanev, V.A., Filimoshin, V.G., Karimov, A. Kh., Petrov, B.I., and Pronichev, N.D., Technology of Electrochemical Machining of Parts in Aircraft Engine Manufacturing (in Russian), Moscow: Mashinostroenie, 1986.]
  5. Давыдов, А.Д., Волгин, В.М., Любимов, В.В. Электрохимическая размерная обработка металлов: процесс формообразования. Электрохимия. 2004. Т. 40. С. 1438. [Davydov, A.D., Volgin, V.M., and Lyubimov, V.V., Electrochemical machining of metals: Fundamentals of electrochemical shaping, Russ. J. Electrochem., 2004, vol. 40, p. 1230.] https://doi.org/10.1007/s11175-005-0045-8
  6. Житников, В.П., Зайцев, А.Н. Импульсная электрохимическая размерная обработка. М.: Машиностроение, 2008. [Zhitnikov, V.P. and Zaitsev, A.N., Pulsed Electrochemical Machining (in Russian), Moscow: Mashinostroenie, 2008.]
  7. Painuly, M., Singh, R.P., and Trehan, R., Electrochemical machining and allied processes: a comprehensive review, J. Solid State Electrochem., 2023, vol. 27, p. 3189. https://doi.org/10.1007/s10008-023-05610-x
  8. Ge, Y.C., Zhu, Z., Ma, Z., and Wang, D., Large allowance electrochemical turning of revolving parts using a universal cylindrical electrode, J. Mater. Process Tech., 2018, vol. 258, p. 89. https://doi.org/10.1016/j.jmatprotec.2018.03.013
  9. Wang, D., Zhu, Z., Wang, H., and Zhu, D., Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method, Chinese J. Aeronautics, 2016, vol. 29, no. 2, p. 534. http://dx.doi.org/10.1016/j.cja.2015.06.022
  10. Wang, D., Zhu, Z.W., He, B., Zhu, D., and Fang, Z., Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool, J. Manuf. Process, 2018, vol. 35, p. 614. https://doi.org/10.1016/j.jmapro.2018.09.016
  11. Cao, W., Wang, D., and Zhu, D., Modeling and experimental validation of interelectrode gap in counter-rotating electrochemical machining, Int. J. Mech. Sci., 2020, vol. 187, p. 105920. https://doi.org/10.1016/j.ijmecsci.2020.105920
  12. Cao, W., Wang, D., Ren, Z., and Zhu, D., Evolution of convex structure during counter-rotating electrochemical machining based on kinematic modeling, Chinese J. Aeronautics, 2021, vol. 34, p. 39. https://doi.org/10.1016/j.cja.2020.09.003
  13. Wang, D., Li, J., He, B., and Zhu, D., Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining, Chinese J. Aeronautics, 2019, vol. 32, p. 2557. https://doi.org/10.1016/j.cja.2019.08.022
  14. Cao, W., Wang, D., Cui, G., and Le, H., Analysis of the roundness error elimination in counter-rotating electrochemical machining, J. Manuf. Process, 2022, vol. 76, p. 57. https://doi.org/10.1016/j.jmapro.2022.02.015
  15. Wang, D., Zhu, Z., Zhu, D., He, B., and Ge, Y., Reduction of stray current in counter-rotating electrochemical machining by using a flexible auxiliary electrode mechanism, J. Mater. Process Technol., 2017, vol. 239, p. 66. https://doi.org/10.1016/j.jmatprotec.2016.08.008
  16. Dawes, C.L., Capacitance and potential gradients of eccentric cylindrical condensers, Physics, 1933, vol. 4, no. 2, p. 81.
  17. Weber, E., Electromagnetic Fields: Theory and Applications, New York: Wiley, 1950, vol. 1.
  18. Kasper, C., The theory of the potential and the technical practice of electrodeposition: IV. The flow between and to circular cylinders, Trans. Electrochem. Soc., 1940, vol. 78, no. 1, p. 147.
  19. Morales, M., Diaz, R.A., and Herrera, W.J., Solutions of Laplace’s equation with simple boundary conditions, and their applications for capacitors with multiple symmetries, J. Electrostat., 2015, vol. 78, p. 31. https://doi.org/10.1016/j.elstat.2015.09.006
  20. Deconinck, J., Current Distributions and Electrode Shape Changes in Electrochemical Systems, in: Lecture Notes in Engineering, vol. 75. Berlin: Springer, 1992.
  21. Kozak, J., Computer simulation system for electrochemical shaping, J. Mater. Process Technol., 2001, vol. 109, no. 3, p. 354. https://doi.org/10.1016/S0924-0136(00)00825-6
  22. Pattavanitch, J., Hinduja, S., and Atkinson, J., Modelling of the electrochemical machining process by the boundary element method, CIRP Annals, 2010, vol. 59, no. 1, p. 243. https://doi.org/10.1016/j.cirp.2010.03.07223
  23. Volgin, V.M., Kabanova, T.B., and Davydov, A.D., Modeling of through-mask electrochemical micromachining, J. Appl. Electrochem., 2015, vol. 45, p. 679. https://doi.org/10.1007/s10800-015-0843-y
  24. Volgin, V.M., Lyubimov, V.V., and Davydov, A.D., Modeling and numerical simulation of electrochemical micromachining, Chem. Eng. Sci., 2016, vol. 140, p. 252. https://doi.org/10.1016/j.ces.2015.09.034
  25. Volgin, V.M., Gnidina, I.V., Sidorov, V.N., Kabanova, T.B., and Davydov, A.D., Modeling of electrochemical micromachining of cylindrical hole surface by eccentric cathode, J. Solid State Electrochem., 2024, vol. 28, p.1475. doi: 10.1007/s10008-023-05661-0
  26. Britz, D. and Strutwolf, J., Digital Simulation in Electrochemistry, Berlin: Springer. 2005.
  27. Babur, O., Smilauer, V., Verhoeff, T., van den Brand, M., A survey of open source multiphysics frameworks in engineering, Proc. Computer Science, 2015, vol. 51, p. 1088. https://doi.org/10.1016/j.procs.2015.05.273
  28. Betcke, T. and Scroggs, M.W., Bempp-cl: A fast Python based just-in-time compiling boundary element library, J. Open Source Software, 2021, vol. 6, no. 59, p. 2879. https://doi.org/10.21105/joss.02879
  29. Nishimura, N., Fast multipole accelerated boundary integral equation methods, Appl. Mech. Rev., 2002, vol. 55, no. 4, p. 299. https://doi.org/10.1115/1.1482087
  30. Dongarra, J. and Sullivan, F., Guest editors introduction to the top 10 algorithms, Comput. Sci. Eng., 2000, vol. 2, p. 22. https://doi.org/10.1109/MCISE.2000.814652
  31. Liu, Y.J. and Nishimura, N., The fast multipole boundary element method for potential problems: a tutorial, Eng. Anal. Bound. Elem., 2006, vol. 30, no. 5, p. 371. https://doi.org/10.1016/j.enganabound.2005.11.006
  32. Liu, Y., Fast Multipole Boundary Element Method: Theory and Applications in Engineering, Cambridge: Cambridge University, 2009.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025