Composite Solid Electrolyte Na2SO4–Al2O3
- 作者: Rabadanova K.S.1, Gafurova M.M.1, Amirova A.M.2, Kovalev D.Y.2, Akhmedova M.A.2, Kakagasanova M.G.2, Ataeva M.B.2, Kubataeva Z.Y.2, Kadieva M.V.2
-
隶属关系:
- Analytical Center for Collective Use, Institute of Physics, DFRC RAS
- A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
- 期: 卷 61, 编号 7 (2025)
- 页面: 343-354
- 栏目: Articles
- URL: https://edgccjournal.org/0424-8570/article/view/692243
- DOI: https://doi.org/10.7868/S3034618525070036
- ID: 692243
如何引用文章
详细
The effect of adding nanosized γ-Al2O3 on the properties and structure of Na2SO4 was studied using differential scanning calorimetry, vibrational spectroscopy, electrochemical impedance spectroscopy and X-ray diffractometry. It was shown that the introduction of nanosized γ-Al2O3 into sodium sulfate leads to a significant increase in the specific ionic conductivity to 8.48 × 10–5 S/cm at a temperature of 603 K. The results of X-ray diffraction studies and vibrational spectroscopy confirm partial amorphization of the salt in the near-surface region of nanoparticles. The data obtained indicate that the sodium sulfate-based composite can be a promising ionic conductor for solid-state Na-ion batteries in the temperature range of 513–603 K.
作者简介
K. Rabadanova
Analytical Center for Collective Use, Institute of Physics, DFRC RAS
Email: rksh83@mail.ru
Makhachkala, Russia
M. Gafurova
Analytical Center for Collective Use, Institute of Physics, DFRC RAS
Email: malik52@mail.ru
Makhachkala, Russia
A. Amirova
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: muhamadahmedov@mail.ru
Chernogolovka, Russia
D. Kovalev
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: rksh83@mail.ru
Chernogolovka, Russia
M. Akhmedova
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: rksh83@mail.ru
Chernogolovka, Russia
M. Kakagasanova
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: rksh83@mail.ru
Chernogolovka, Russia
M. Ataeva
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: rksh83@mail.ru
Chernogolovka, Russia
Z. Kubataeva
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
Email: rksh83@mail.ru
Chernogolovka, Russia
M. Kadieva
A.G. Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: rksh83@mail.ru
Chernogolovka, Russia
参考
- Kulova, T.L., Gavrilin, I.M., Skundin, A.M., Kovtushenko, E.V., and Kudryashova, Yu.O., New electrochemical systems for sodium-ion batteries, Russ. J. Phys. Chem. A, 2024, vol. 98 (4), p. 771. https://doi.org/10.1134/s0036024424040150
- Guo, Q., Han, S., Lu, Y., Chen, L., and Hu, Y.S., Low-temperature aqueous na-ion batteries: strategies and challenges of electrolyte design, Chin. Phys. Lett., 2023, vol. 40, no. 2, p. 028801. https://doi.org/10.1088/0256-307X/40/2/028801
- Wu, F., Liu, L., Wang, S., Xu, J., Lu, P., Yan, W., Peng, J., Wu, D., and Li, H., Solid state ionics – Selected topics and new directions, Prog. Mater. Sci., 2022, vol. 126, p. 100921. https://doi.org/10.1016/j.pmatsci.2022.100921
- Xie, F., Lu, Y., Chen, L., and Hu, Y.S., Recent progress in presodiation technique for high-performance Na-ion batteries, Chin. Phys. Lett., 2021, vol. 38, no. 11, p. 118401. https://doi.org/10.1088/0256–307X/38/11/118401
- Uvarov, N.F., Ulihin A.S., and Mateyshina, Y.G., Nanocomposite alkali-ion solid electrolytes, Adv. Nanomater. Catal. Energy, 2019, p. 393. https://doi.org/10.1016/B978-0-12-814807-5.00011-5
- Goodenough, J.B. and Singh, P., Review – solid electrolytes in rechargeable electrochemical cells, J. Electrochem. Soc., 2015, vol. 162 (14), p. A2387. https://doi.org/10.1149/2.0021514jes
- Скундин, А.М., Кулова, Т.Л., Ярославцев, А.Б. Натрий-ионные аккумуляторы (обзор). Электрохимия. 2018. T.54. С. 131. [Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries (a review), Russ. J. Eleсtrochem., 2018, vol. 54. p. 113.] https://doi.org/10.1134/S1023193518020076
- Zhao, S., Che, H., Chen, S., et al., Research progress on the solid electrolyte of solid-state sodium-ion batteries, Electrochem. Energy Rev., 2024, vol. 7(3), p. 196. https://doi.org/10.1007/s41918-023-00196-4
- Aslfattahi, N., Samylingam, L., Kiai, M.S., Kadirgama, K., Kulish, V., Schmirler, M., and Said, Z., State-of-the-art review on electrolytes for sodium-ion batteries: Potential recent progress and technical challenges, J. Energy Storage, 2023, vol. 72, p. 108781. https://doi.org/10.1016/j.est.2023.108781
- Kracek, F.C., The polymorphism of sodium sulphate. I: Thermal analysis, J. Phys. Chem., 1929, vol. 33, no. 9, p. 128. https://doi.org/10.1021/j150303a001
- Пройдакова, В.Ю., Воронов, В.В., Пыненков, А.А., Кузнецовa, С.В., Зыкова, М.П., Нищев, К.Н., Федоровa П.П. О полиморфизме сульфата натрия. Журн. неорган. химии. 2022. Т. 67. С. 916. [Proydakova, V. Yu., Voronov, V.V., Pynenkov, A.A., Kuznetsov, S.V., Zykova, M.P., Nishchev, K.N., and Fedorov, P.P., Sodium sulfate polymorphism, Russ. J. Inorganic Chemistry, 2022, vol. 67, p. 970.] https://doi.org/10.1134/s0036023622070208
- Rasmussen, S.E., Jørgensen, J.-E., and Lundtoft, B., Structures and Phase Transitions of Na2 SO4, J. Appl. Cryst., 1996, vol. 29, p. 42. https://doi.org/10.1107/S0021889895008818
- Bobade, S.M., Gopalan, P., and Kulkarni, A.R., Phase transition in Na2SO4: all five polymorphic transformations in DSC, Ionics, 2009, vol. 15, p. 353. https://doi.org/10.1007/s11581-008-0272-6
- Karkhanavala, M.D. and Rao, U.R.K., A differential scanning calorimetric study of phase transitions in Na2SO4, J. Thermal Analysis, 1979, vol. 17, p. 457. https://doi.org/10.1007/BF01914034
- Murray, R.M. and Secco, E.A., Phase transformation studies on pure and K-doped Na2SO4, Can. J. Chem., 1978, vol. 56, p. 2616. https://doi.org//10.1139/v78-430
- Saito, Y., Kobayashi, K., and Maruyama, T., DTA and X-ray studies on the phase transition in un-doped and yttrium-doped sodium sulfates, Thermochim. Acta, 1982, vol. 53, no. 3, p. 289. https://doi.org/10.1016/0040-6031(82)85021-1
- Ахмедов, М.А., Гафуров, М.М., Рабаданов, К.Ш., Атаев, М.Б., Амиров, А.М., Кубатаев, З.Ю., Какагасанов, М.Г. Влияние механоактивации на структуру и электропроводность в системе KNO3–Al2O3. Электрохимия. 2023. Т. 59. С. 465. [Akhmedov, M.A., Gafurov, M.M., Rabadanov, R. Sh., Ataev, M.B., Amirov, A.M., Kubataev, Z.Y., and Kakagasanov, M.G., The effect of mechanical activation on the conductivity in the system KNO3–Al2O3, Russ. J. Eleсtrochem., 2023, vol. 59, p. 589.] https://doi.org/10.1134/S1023193523080037
- Кубатаев, З.Ю., Гафуров, М.М., Рабаданов, К.Ш., Амиров, А.М., Ахмедов, М.А., Какагасанов, М.Г. Влияние наноразмерного оксидного наполнителя на структуру и проводимость композита (1–x)(LiClO4–NaClO4)–xAl2O3. Электрохимия. 2023. Т. 59. С. 474. [Kubataev, Z.Y., Gafurov, M.M., Rabadanov, K. Sh., Amirov, A.M., Akhmedov, M.A., and Kakagasanov, M.G., The effect of the nanosized oxide filler on the structure and conductivity of composite (1–x)(LiClO4–NaClO4)–xAl2O3, Russ. J. Eleсtrochem., 2023, vol. 59, p. 598.] https://doi.org/10.1134/s1023193523080050
- Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Y., and Rabadanova, D.I., Research of the structure and dynamic interactions of particles in the Li0.42K0.58NO3– R (R = α-Al2O3, γ-Al2O3, SiO2) and (LiNO3–LiClO4) – γ-Al2O3 composites in various temperature conditions and phase states, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, vol. 257, p. 119765. https://doi.org/10.1016/j.saa.2021.119765
- Рабаданов, К.Ш., Гафуров, М.М., Кубатаев, З.Ю., Амиров, А.М., Ахмедов, М.А., Шабанов, Н.С., Атаев, М.Б. Ионная проводимость и колебательные спектры композитов LiNO3–KNO3 + Al2O3. Электрохимия. 2019. Т. 55. С. 750. [Rabadanov, K.S., Gafurov, M.M., Kubataev, Z.Y., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., and Ataev, M.B., Ion conductivity and vibrational spectra of LiNO3–KNO3 + Al2O3 composites, Russ. J. Eleсtrochem., 2019, vol. 55, p. 573.] https://doi.org/10.1134/S1023193519060168
- Amirov, A.M., Akhmedov, M.A., Kubataev, Z. Yu., Gafurov, M.M., Rabadanov, K. Sh., and Kadiev, M.V., Effect of lithium perchlorate addition on LiNO3–KNO3 nitrate eutectic, Ionics, 2024, vol. 30, no. 9. https://doi.org/10.1007/s11581-024-05715-x
- Choi, B.K. and Lockwood, D.J., Raman spectrum of Na2SO4 (phases I and II, Solid State Commun, 1990, vol. 76, no. 6, p. 863. https://doi.org/10.1016/0038-098(90)90644-Q
- Алиев, А.Р., Ахмедов, И.Р., Какагасанов, М.Г., Алиев, З.А. Спектры комбинационного рассеяния поликристаллических сульфатов лития, натрия и калия в предпереходной температурной области ниже структурного фазового перехода. Физика твердого тела. 2019. Т. 61 (8). С. 1513. [Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G., and Aliev, Z.A., Raman spectra of polycrystalline lithium sulfate, sodium sulfate, and potassium sulfate in the pretransition temperature range lower the structural phase transition, Physics of the Solid State, 2019, vol. 61 (8), p. 1464.] https://doi.org/10.1134/S1063783419080043
- Wefers, K. and Misra, C., Oxides and Hydroxides of Aluminum, Pittsburgh: Alcoa Technical Paper, 1987. 92 p.
- Paglia, G., Rohl, A.L., Buckley, C.E., and Gale, J.D., Determination of the structure of g-alumina from interatomic potential and first-principles calculations: The requirement of significant numbers of nonspinel positions to achieve an accurate structural model, Phys. Rev. B, 2005, vol. 71, p. 224115. https://doi.org/10.1103/PhysRevB.71.224115
- Levin, I. and Brandon, D., Metastable alumina polymorphs: crystal structures and transition sequences, J. Amer. Ceram. Soc., 1998, vol. 81, p. 1995. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x
- Ruberto, C., Yourdshahyan, Y., and Lundqvist, B.I., Surface properties of metastable alumina: A comparative study of κ- and α-Al2O3, Phys. Rev. B, 2003, vol. 67, p. 195412. https://doi.org/10.1103/PHYSREVB.67.195412
补充文件
