Интраназальное введение белка GRP78 (HSPA5) противодействует гибели нейронов в голубом пятне в модели хронической депривации сна у крыс
- Авторы: Пази М.Б.1, Екимова И.В.1
-
Учреждения:
- Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН
- Выпуск: Том 110, № 8 (2024)
- Страницы: 1238-1252
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://edgccjournal.org/0869-8139/article/view/651623
- DOI: https://doi.org/10.31857/S0869813924080022
- EDN: https://elibrary.ru/BCRJTF
- ID: 651623
Цитировать
Аннотация
Хроническое недосыпание (сон менее 6 ч в сутки) в связи с производственной необходимостью и снижением качества сна является эндемическим заболеванием в современном обществе. Хроническое недосыпание вызывает серьезные нейроповеденческие нарушения, сопряженные с необратимыми нейродегенеративными изменениями в головном мозге. Поиск фармакологических агентов способных снизить риск развития нейродегенерации в результате хронической потери сна является актуальной задачей биомедицины. Интраназальное введение глюкозо-регулируемого белка теплового шока 78 кДа (GRP78) оказывает нейропротективный эффект в модели болезни Паркинсона у крыс. Нейропротективный потенциал интраназально введенного GRP78 при хроническом недосыпании ранее не исследовался. Задача исследования – выяснить, способно ли профилактическое интраназальное введение GRP78 ослабить и/или остановить процесс нейродегенерации в голубом пятне в модели хронического ограничения сна (ОС) у крыс. Исследование проведено на 6-месячных самцах крыс популяции Вистар. Для депривации сна был применен валидизированный метод качающейся платформы в режиме: 3 ч лишения сна и 1 ч покоя непрерывно в течение 5 суток. Рекомбинантный белок GRP78 человека вводили интраназально за два дня до начала ОС и в течение 5 суток ОС. Клеточно-молекулярные изменения в голубом пятне при ОС и при введении GRP78 исследовались с помощью иммуногистохимии и вестерн-блоттинга. Показано, что хроническое ОС приводит к гибели 30% норадренергических нейронов в голубом пятне, которое было сопряжено с повышением уровней активированных каспаз-3, 9. Это свидетельствует о развитии апоптоза по митохондриальному пути. Признаков реактивного микроглиоза не обнаружено в модели хронического ОС у крыс. Мы продемонстрировали, что интраназально введенный GRP78 проникает и накапливается в норадренергических нейронах голубого пятна, это противодействует гибели нейронов по пути апоптоза. Полученные данные позволяют считать GRP78 потенциальным нейропротекторным средством для профилактики патологических последствий хронического недосыпания.
Ключевые слова
Полный текст

Об авторах
М. Б. Пази
Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН
Автор, ответственный за переписку.
Email: pazimariia@gmail.com
Россия, Санкт-Петербург
И. В. Екимова
Институт эволюционной физиологии и биохимии им. И. М. Сеченова РАН
Email: pazimariia@gmail.com
Россия, Санкт-Петербург
Список литературы
- Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K (2015) The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol 14: 547–558. https://doi.org/10.1016/S1474–4422(15)00021–6
- Strygin KN, Poluektov MG (2017) INSOMNIA. Medical Council 52–58. https://doi.org/10.21518/2079–701X-2017–0–52–58
- Schutte-Rodin S, Broch L, Buysse D, Dorsey C, Sateia M (2008) Clinical guideline for the evaluation and management of chronic insomnia in adults. J Clin Sleep Med 04: 487–504. https://doi.org/10.5664/jcsm.27286
- Shan W, Peng X, Tan W, Zhou Z, Xie H, Wang S (2024) Prevalence of insomnia and associations with depression, anxiety among adults in guangdong, China: A large-scale cross-sectional study. Sleep Med 115: 39–47. https://doi.org/10.1016/j.sleep.2024.01.023
- Ahn E, Baek Y, Park J-E, Lee S, Jin H-J (2024) Elevated prevalence and treatment of sleep disorders from 2011 to 2020: a nationwide population-based retrospective cohort study in Korea. BMJ Open 14: e075809. https://doi.org/10.1136/bmjopen-2023–075809
- Hisler G, Muranovic D, Krizan Z (2019) Changes in sleep difficulties among the U.S. population from 2013 to 2017: results from the National Health Interview Survey. Sleep Health 5: 615–620. https://doi.org/10.1016/j.sleh.2019.08.008
- Norell-Clarke A, Hagquist C (2017) Changes in sleep habits between 1985 and 2013 among children and adolescents in Sweden. Scand J Public Health 45: 869–877. https://doi.org/10.1177/1403494817732269
- Costa A, Pereira T (2019) The effects of sleep deprivation on cognitive performance. Eur J Public Health 29: ckz034.096. https://doi.org/10.1093/eurpub/ckz034.096
- Al-Abri M (2015) Sleep deprivation and depression: A bi-directional association. Sultan Qaboos Univ Med J 15: e4-e6.
- Rosen I, Gimotty P, Shea J, Bellini L (2006) Evolution of sleep quantity, sleep deprivation, mood disturbances, empathy, and burnout among interns. Acad Med 81: 82–85. https://doi.org/10.1097/00001888–200601000–00020
- Belenky G, Wesensten N, Thorne D, Thomas M, Sing H, Redmond D, Russo M, Balkin T (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose‐response study. J Sleep Res 12: 1–12. https://doi.org/10.1046/j.1365–2869.2003.00337.x
- Pejovic S, Basta M, Vgontzas A, Kritikou I, Shaffer M, Tsaoussoglou M, Stiffler D, Stefanakis Z, Bixler E, Chrousos G (2013) Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab 305: E890-E896. https://doi.org/10.1152/ajpendo.00301.2013
- Van Dongen H, Maislin G, Mullington J, Dinges D (2003) The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26: 117–126. https://doi.org/10.1093/sleep/26.2.117
- Lutsey P, Misialek J, Mosley T, Gottesman R, Punjabi N, Shahar E, MacLehose R, Ogilvie R, Knopman D, Alonso A (2018) Sleep characteristics and risk of dementia and Alzheimer’s disease: The atherosclerosis risk in communities study. Alzheimers Dement 14: 157–166. https://doi.org/10.1016/j.jalz.2017.06.2269
- Pase M, Himali J, Grima N, Beiser A, Satizabal C, Aparicio H, Thomas R, Gottlieb D, Auerbach S, Seshadri S (2017) Sleep architecture and the risk of incident dementia in the community. Neurology 89: 1244–1250. https://doi.org/10.1212/WNL.0000000000004373
- Owen J, Zhu Y, Fenik P, Zhan G, Bell P, Liu C, Veasey S (2021) Late-in-life neurodegeneration after chronic sleep loss in young adult mice. Sleep 44(8): zsab057. https://doi.org/10.1093/sleep/zsab057
- Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S (2016) Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. Sleep 39: 1601–1611. https://doi.org/10.5665/sleep.6030
- Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang M, Reid S, Lai D, Davis J, Baur J, Veasey S (2014) Extended wakefulness: compromised metabolics in and degeneration of locus coeruleus neurons. J Neurosci 34: 4418–4431. https://doi.org/10.1523/JNEUROSCI.5025–12.2014
- Aston-Jones G, Bloom F (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886. https://doi.org/10.1523/JNEUROSCI.01–08–00876.1981
- Benington J, Craig Heller H (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45: 347–360. https://doi.org/10.1016/0301–0082(94)00057-O
- Costa C, Manaa W, Duplan E, Checler F (2020) The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson’s disease physiopathology. Cells 9: 2495. https://doi.org/10.3390/cells9112495
- Naidoo N, Giang W, Galante R, Pack A (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92: 1150–1157. https://doi.org/10.1111/j.1471–4159.2004.02952.x
- Voronin MV, Abramova EV, Verbovaya ER, Vakhitova YV, Seredenin SB (2023) Chaperone-dependent mechanisms as a pharmacological target for neuroprotection. Int J Mol Sci 24: 823. https://doi.org/10.3390/ijms24010823
- Gorbatyuk M, Gorbatyuk O (2013) The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: A mini review. J Genet Syndr Gene Ther 4. https://doi.org/10.4172/2157–7412.1000128
- Pazi M, Belan D, Komarova E, Ekimova I (2024) Intranasal administration of GRP78 protein (HSPA5) confers neuroprotection in a lactacystin-induced rat model of parkinson’s disease. Int J Mol Sci 25: 3951. https://doi.org/10.3390/ijms25073951
- Guzeev MA, Kurmazov NS, Simonova VV, Pastukhov YuF, Ekimova IV (2021) Modeling of chronic sleep restriction for translational studies. SS Korsakov J Neurol Psychiatr 121(4–2): 6–13. https://doi.org/10.17116/jnevro20211214026
- Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th ed. Elsevier. Amsterdam.
- Manchanda S, Singh H, Kaur T, Kaur G (2018) Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol Cell Biochem 449: 63–72. https://doi.org/10.1007/s11010–018–3343–7
- Hurtado-Alvarado G, Domínguez-Salazar E, Pavon L, Velázquez-Moctezuma J, Gómez-González B (2016) Blood-brain barrier disruption induced by chronic sleep loss: Low-grade inflammation may be the link. J Immunol Res 2016: 1–15. https://doi.org/10.1155/2016/4576012
- Deurveilher S, Semba K (2019) Physiological and neurobehavioral consequences of chronic sleep sestriction in rodent models. Handbook Sleep Res 557–567. https://doi.org/10.1016/B978–0–12–813743–7.00037–2
- Deurveilher S, Rusak B, Semba K (2012) Time-of-day modulation of homeostatic and allostatic sleep responses to chronic sleep restriction in rats. Am J Physiol Regul Integr Comp Physiol 302(12): R1411-R1425. https://doi.org/10.1152/ajpregu.00678.2011
- Takemoto H, Yoshimori T, Yamamoto A, Miyata Y, Yahara I, Inoue K, Tashiro Y (1992) Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys 296: 129–136. https://doi.org/10.1016/0003–9861(92)90554-A
- Baek J-H, Mamula D, Tingstam B, Pereira M, He Y, Svenningsson P (2019) GRP78 level is altered in the brain, but not in plasma or cerebrospinal fluid in Parkinson’s disease patients. Front Neurosci 13: 697. https://doi.org/10.3389/fnins.2019.00697
- Casas C (2017) GRP78 at the centre of the stage in cancer and neuroprotection. Front Neurosci 11: 177. https://doi.org/10.3389/fnins.2017.00177
- Shields A, Thompson S, Panayi G, Corrigall V (2012) Pro-resolution immunological networks: binding immunoglobulin protein and other resolution-associated molecular patterns. Rheumatology (Oxford) 51: 780–788. https://doi.org/10.1093/rheumatology/ker412
- Eggleton P, De Alba J, Weinreich M, Calias P, Foulkes R, Corrigall V (2023) The therapeutic mavericks: Potent immunomodulating chaperones capable of treating human diseases. J Cell Mol Med 27: 322–339. https://doi.org/10.1111/jcmm.17669
- Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M, Aston-Jones G, Veasey S (2007) Selective loss of catecholaminergic wake–active neurons in a murine sleep apnea model. J Neurosci 27: 10060–10071. https://doi.org/10.1523/JNEUROSCI.0857–07.2007
- Somarajan B, Khanday M, Mallick B (2016) Rapid eye movement sleep deprivation induces neuronal apoptosis by noradrenaline acting on alpha1 adrenoceptor and by triggering mitochondrial intrinsic pathway. Front Neurol 7: 25. https://doi.org/10.3389/fneur.2016.00025
- Leiva-Rodríguez T, Romeo-Guitart D, Herrando-Grabulosa M, Muñoz-Guardiola P, Polo M, Bañuls C, Petegnief V, Bosch A, Lizcano J, Apostolova N, Forés J, Casas C (2021) GRP78 Overexpression triggers PINK1-IP3R-mediated neuroprotective mitophagy. Biomedicines 9: 1039. https://doi.org/10.3390/biomedicines9081039
- Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 37: 5263–5273. https://doi.org/10.1523/JNEUROSCI.3981–16.2017
- Wadhwa M, Kumari P, Chauhan G, Roy K, Alam S, Kishore K, Ray K, Panjwani U (2017) Sleep deprivation induces spatial memory impairment by altered hippocampus neuroinflammatory responses and glial cells activation in rats. J Neuroimmunol 312: 38–48. https://doi.org/10.1016/j.jneuroim.2017.09.003
- Hall S, Deurveilher S, Robertson G, Semba K (2020) Homeostatic state of microglia in a rat model of chronic sleep restriction. Sleep 43(11): zsaa108. https://doi.org/10.1093/sleep/zsaa108
- Hou J, Shen Q, Wan X, Zhao B, Wu Y, Xia Z (2019) REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res 364: 167–176. https://doi.org/10.1016/j.bbr.2019.01.038
- Xie L, Kang H, Xu Q, Chen M, Liao Y, Thiyagarajan M, O’Donnell J, Christensen D, Nicholson C, Iliff J, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373–377. https://doi.org/10.1126/science.1241224
- Lapshina KV, Ekimova IV (2024) Aquaporin-4 and Parkinson’s Disease. Int J Mol Sci 25: 1672. https://doi.org/10.3390/ijms25031672
- Shokri-Kojori E, Wang G-J, Wiers C, Demiral S, Guo M, Kim S, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow N (2018) β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115: 4483–4488. https://doi.org/10.1073/pnas.1721694115
- Ju Y-ES, Ooms S, Sutphen C, Macauley S, Zangrilli M, Jerome G, Fagan A, Mignot E, Zempel J, Claassen J, Holtzman D (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain 140: 2104–2111. https://doi.org/10.1093/brain/awx148
- Lapshina KV, Guzeev MA, Ekimova IV (2016) Glucose-regulated protein Grp78 affects characteristics of sleep and thermoregulation in rats. J Evol Biochem Physiol 52: 161–167. https://doi.org/10.1134/S002209301602006X
- Naidoo N, Casiano V, Cater J, Zimmerman J, Pack A (2007) A role for the molecular chaperone protein BiP/GRP78 in drosophila sleep homeostasis. Sleep 30: 557–565. https://doi.org/10.1093/sleep/30.5.557
Дополнительные файлы
