SINGLE-ATOM ALLOY Pd1Ag6/Al2O3 EGG-SHELL CATALYST FOR SELECTIVE ACETYLENE HYDROGENATION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, a single-atom alloy Pd1Ag6/Al2O3 catalyst for the selective hydrogenation of acetylene was obtained with an egg-shell distribution of the active phase over the catalyst granules. The formation of an egg-shell structure was confirmed by electron probe microanalysis. It was found that metals are predominantly localized at a depth of 130–160 µm from the surface of the granules. Transmission electron microscopy and X-ray photoelectron spectroscopy have revealed the formation of a substitutional PdAg solid solution with electron density transfer from Ag to Pd. The formation of Pd1 single sites was confirmed by FTIR spectro-scopy of adsorbed CO. In the selective hydrogenation of acetylene the synthesized single-atom alloy Pd1Ag6/Al2O3 with egg-shell distribution showed high selectivity, which radically exceeds the selectivity of the palladium counterpart.

About the authors

I. S. Mashkovsky

Zelinsky Institute of Organic Chemistry RAS

Author for correspondence.
Email: im@ioc.ac.ru
Russian Federation, 119991, Moscow

D. P. Melnikov

Zelinsky Institute of Organic Chemistry RAS; Gubkin University

Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow; Russian Federation, 119991, Moscow

P. V. Markov

Zelinsky Institute of Organic Chemistry RAS

Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow

G. N. Baeva

Zelinsky Institute of Organic Chemistry RAS

Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow

N. S. Smirnova

Zelinsky Institute of Organic Chemistry RAS

Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow

G. O. Bragina

Zelinsky Institute of Organic Chemistry RAS

Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow

A. Yu. Stakheev

Zelinsky Institute of Organic Chemistry RAS

Author for correspondence.
Email: st@ioc.ac.ru
Russian Federation, 119991, Moscow

References

  1. Gao Y., Neal L., Ding D., Wu W., Baroi C., Gaffney A.M., Li F. // ACS Catal. 2019. V. 9. P. 8592–8621. https://doi.org/10.1021/acscatal.9b02922
  2. Shen F., Wang X., Huang L., Ye Z., Qian F. // Ind. Eng. Chem. Res. 2019. V. 58. P. 1686–1700. https://doi.org/10.1021/acs.iecr.8b05247
  3. Sundaram K.M., Shreehan M.M., Olszewski E.F. Ethylene. In: Kirk-Othmer Encyclopedia of Chemical Technology. V. 9. John Wiley & Sons, 2000. P. 431. https://doi.org/10.1002/0471238961.0520082519211404.a01.pub3
  4. Zimmermann H., Walzl R. Ethylene. In: Ullmann’s Encyclopedia of Industrial Chemistry. V. 13. Wiley-VCH Verlag GmbH&Co. KGaA, 2000. P. 465. https://doi.org/10.1002/14356007.a10_045.pub3
  5. Akah A., Williams J., Ghrami M. // Catal. Surv. Asia. 2019. V. 23. P. 265–276. https://doi.org/10.1007/s10563-019-09280-6
  6. Gholami Z., Gholami F., Tišler Z., Tomas M., Vakili M. // Energies. 2021. V. 14. P. 1089. https://doi.org/10.3390/en14041089
  7. Zakria M.H., Mohd Nawawi M.G., Abdul Rahman M.R., Saudi M.A. // Polyolefins J. 2021. V. 8. P. 105–113. https://doi.org/10.22063/poj.2021.2795.1169
  8. Borodziński A., Bond G.C. // Catal. Rev. 2008. V. 50. P. 379–469. https://doi.org/10.1080/01614940802142102
  9. Arnold H., Döbert F., Gaube J. Organic Reactions: Hydrogenation Reactions: Selective Hydrogenation of Hydrocarbons. In: Handbook of Heterogeneous Cata-lysis. Ertl G., Knözinger H., Schüth F., Weitkamp J. (Eds.). Wiley-VCH Verlag GmbH & Co. KGaA, 2008. P. 3266−3284. https://doi.org/10.1002/9783527610044.hetcat0166
  10. Глыздова Д.В., Смирнова Н.С., Шляпин Д.А., Цырульников П.Г. // Рос. хим. ж. 2018. Т. 62. С. 89–109. https://doi.org/10.1134/S1070363220060298
  11. McCue A.J., Anderson J.A. // Front. Chem. Sci. Eng. 2015. V. 9. P. 142–153. https://doi.org/10.1007/s11705-015-1516-4
  12. Shittu T.D., Ayodele O.B. // Front. Chem. Sci. Eng. 2022. V. 16. P. 1031–1059. https://doi.org/10.1007/s11705-021-2113-3
  13. Ravanchi M.T., Sahebdelfar S., Komeili S. // Rev. Chem. Eng. 2018. V. 34. P. 215–237. https://doi.org/10.1515/revce-2016-0036
  14. Concepción P., García S., Hernández-Garrido J.C., Calvino J.J., Corma A. // Catal. Today. 2016. V. 259. P. 213–221. https://doi.org/10.1016/j.cattod.2015.07.022
  15. Николаев С.А., Кротова И.Н. // Нефтехимия. 2013. Т. 53. С. 442–448. https://doi.org/10.7868/S0028242113050079
  16. Choudhary T.V., Sivadinarayana C., Datye A.K., Kumar D., Goodman D.W. // Catal. Lett. 2003. V. 86. P. 1–8. https://doi.org/10.1023/A:1022694505504
  17. Zhang R., Zhang J., Zhao B., He L., Wang A., Wang B. // J. Phys. Chem. C. 2017. V. 121. P. 27936–27949. https://doi.org/10.1021/acs.jpcc.7b08125
  18. McCue A.J., Shepherd A.M., Anderson J.A. // Catal. Sci. Tech. 2015. V. 5. P. 2880–2890. https://doi.org/10.1039/C5CY00253B
  19. Cao X., Mirjalili A., Wheeler J., Xie W., Jang B.W.-L. // Front. Chem. Sci. Eng. 2015. V. 9. P. 442–449. https://doi.org/10.1007/s11705-015-1547-x
  20. Friedrich M., Villaseca S.A., Szentmiklósi L., Teschner D., Armbrüster M. // Materials. 2013. V. 6. P. 2958–2977. https://doi.org/10.3390/ma6072958
  21. Glyzdova D.V., Smirnova N.S., Leont’eva N.N., Gerasimov E.Yu., Prosvirin I.P., Vershinin V.I., Shlyapin D.A., Tsyrul’nikov P.G. // Kinet. Catal. 2017. V. 58. P. 140–146. https://doi.org/10.1134/S0023158417020057
  22. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Trenikhin M.V., Prosvirin I.P., Shlyapin D.A. // ChemCatChem. 2022. V. 14. e202200893. https://doi.org/10.1002/cctc.202200893
  23. Машковский И.С., Ткаченко О.П., Баева Г.Н., Стахеев А.Ю. // Кинетика и катализ. 2009. Т. 50. P. 798–805. https://doi.org/10.1134/S0023158409050206
  24. Meunier F., Maffre M., Schuurman Y., Colussi S., Trovarelli A. // Catal. Commun. 2018. V. 105. P. 52–55. https://doi.org/10.1016/j.catcom.2017.11.012
  25. Mashkovsky I.S., Markov P.V., Bragina G.O., Baeva G.N., Rassolov A.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., Stakheev A.Yu. // Mendeleev Commun. 2018. V. 28. P. 152–154. https://doi.org/10.1016/j.mencom.2018.03.014
  26. Praserthdam P., Ngamsom B., Bogdanchikova N., Phatanasri S., Pramotthana M. // Appl. Catal. A: General. 2002. V. 230. P. 41–51. https://doi.org/10.1016/S0926-860X(01)00993-0
  27. Takht Ravanchi M., Sahebdelfar S., Rahimi Fard M., Moosavi H. // Iran. J. Chem. Eng. 2021. V. 18. P. 19–30. https://doi.org/10.22034/ijche.2021.269052.1382
  28. Delgado J.A., Benkirane O., de Lachaux S., Claver C., Ferré J., Curulla-Ferré D., Godard C. // ChemNanoMat. 2022. V. 8. e202200058. https://doi.org/10.1002/cnma.202200058
  29. Kley K.S., De Bellis J., Schüth F. // Catal. Sci. Technol. 2023. V. 13. P. 119–131. https://doi.org/10.1039/D2CY01424F
  30. Pei G.X., Liu X.Y., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T. // ACS Catal. 2015. V. 5. P. 3717–3725. https://doi.org/10.1021/acscatal.5b00700
  31. Chai S., Gao D., Xia J., Yang Y., Wang X. // ChemCatChem. 2023. V. 15. e202300217. https://doi.org/10.1002/cctc.202300217
  32. Pachulski A., Schödel R., Claus P. // Appl. Catal. A: General. 2012. V. 445–446. P. 107–120. https://doi.org/10.1016/j.apcata.2012.08.018
  33. Gotz D., Kuhn M., Claus P. // Chem. Eng. Res. Des. 2015. V. 94. P. 594–604. https://doi.org/10.1016/j.cherd.2014.10.005
  34. Zhang Q., Li J., Liu X., Zhu Q. // Appl. Catal. A. 2000. V. 197. P. 221–228. https://doi.org/10.1016/S0926-860X(99)00463-9
  35. Huang D.C., Chang K.H., Pong W.F., Tseng P.K., Hung K.J., Huang W.F. // Catal. Lett. 1998. V. 53. P. 155–159. https://doi.org/10.1023/a:1019022326090
  36. Zhang Y., Diao W., Williams C.T., Monnier J.R. // Appl. Catal. A. 2014. V. 469. P. 419–426. https://doi.org/10.1016/j.apcata.2013.10.024
  37. Kuhn M., Lucas M., Claus P. // Ind. Eng. Chem. Res. 2015. V. 54. P. 6683–6691. https://doi.org/10.1021/acs.iecr.5b01682
  38. Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Prosvirin I.P., Bukhtiyarov A.V., Shlya-pin D.A. // Appl. Catal. A. 2020. V. 600. P. 117627. https://doi.org/10.1016/j.apcata.2020.117627
  39. Lee J.H., Kim S.K., Ahn I.Y., Kim W.-J., Moon S.H. // Catal. Commun. 2011. V. 12. P. 1251–1254. https://doi.org/10.1016/j.catcom.2011.04.015
  40. Ahn I.Y., Lee J.H., Kim S.K., Moon S.H. // Appl. Catal. A. 2009. V. 360. P. 38–42. https://doi.org/10.1016/j.apcata.2009.02.044
  41. Pachulski A., Schödel R., Claus P. // Appl. Catal. A. 2011. V. 400. P. 14–24. https://doi.org/10.1016/j.apcata.2011.03.019
  42. Hannagan R.T., Giannakakis G., Flytzani-Stephanopoulos M., Sykes E.C.H. // Chem. Rev. 2020. V. 120. P. 12044–12088. https://doi.org/10.1021/acs.chemrev.0c00078
  43. Giannakakis G., Flytzani-Stephanopoulos M., Sy-kes E.C.H. // Acc. Chem. Res. 2019. V. 52. P. 237–247. https://doi.org/10.1021/acs.accounts.8b00490
  44. Машковский И.С., Марков П.В., Рассолов А.В., Патиль Е.Д., Стахеев А.Ю. // Успехи химии. 2023. Т. 92. № 8. RCR5087. https://doi.org/10.59761/RCR5087
  45. Рассолов А.В., Брагина Г.О., Баева Г.Н., Машковский И.С., Стахеев А.Ю. // Кинетика и катализ. 2020. Т. 61. С. 837–847. https://doi.org/10.31857/S0453881120060131
  46. Rassolov A.V., Mashkovsky I.S., Bragina G.O., Baeva G.N., Markov P.V., Smirnova N.S., Wärnå J., Stakheev A.Yu., Murzin D.Yu. // Mol. Catal. 2021. V. 506. P. 111550. https://doi.org/10.1016/j.mcat.2021.111550
  47. Schimpf S., Gaube J., Claus P. Selective Hydrogenation of Multiple Unsaturated Compounds. In: Basic Principles in Applied Catalysis. Springer Series in Chemical Physics. Baerns M. (Ed.). V. 75. Springer, Berlin, Heidelberg, 2004. P. 85–123. https://doi.org/10.1007/978-3-662-05981-4_3
  48. Takht Ravanchi M., Sahebdelfar S. // Appl. Catal. A. 2016. V. 525. P. 197–203. https://doi.org/10.1016/j.apcata.2016.07.014
  49. Wuchter N., Schäfer P., Schüler C., Gaube J., Miehe G., Fuess H. // Chem. Eng. Technol. 2006. V. 29. P. 1487–1495. https://doi.org/10.1002/ceat.200600237
  50. Osswald J., Kovnir K., Armbrüster M., Giedigkeit R., Jentoft R.E., Wild U., Grin Yu., Schlögl R. // J. Catal. 2008. V. 258. P. 219–227. https://doi.org/10.1016/j.jcat.2008.06.014
  51. Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Mashkovsky I.S., Markov P.V., Rassolov A.V., Smirnova N.S., Baeva G.N., Rameshan C., Rameshan R., Zubavichus Ya.V., Bukhtiyarov V.I., Stakheev A.Yu. // Appl. Surf. Sci. 2022. V. 604. P. 154497. https://doi.org/10.1016/j.apsusc.2022.154497
  52. Kim S.K., Kim C., Lee J.H., Kim J., Lee H., Moon S.H. // J. Catal. 2013. V. 306. P. 146–154. https://doi.org/10.1016/j.jcat.2013.06.018
  53. Lear T., Marshall R., Lopez-Sanchez J.A., Jackson S.D., Klapotke T.M., Baumer M., Rupprechter G., Freund H.J., Lennon D. // J. Chem. Phys. 2005. V. 123. P. 174706. https://doi.org/10.1063/1.2101487
  54. Cabilla G.C., Bonivardi A.L., Baltanás M.A. // Catal. Lett. 1998. V. 55. P. 147–156. https://doi.org/10.1023/A:1019095231484
  55. Vannice M.A., Wang S.Y. // J. Phys. Chem. 1981. V. 85. P. 2543–2546. https://doi.org/10.1021/j150617a026
  56. Рассолов А.В., Брагина Г.О., Баева Г.Н., Смирнова Н.С., Казаков А.В., Машковский И.С., Бухтияров А.В., Зубавичус Я.В., Стахеев А.Ю. // Кинетика и катализ. 2020. Т. 61. С. 676–686. https://doi.org/10.31857/S045388112005010X
  57. Aich P., Wei H., Basan B., Kropf A.J., Schweitzer N.M., Marshall C.L., Miller J.T., Meyer R. // J. Phys. Chem. C. 2015. V. 119. P. 18140–18148. https://doi.org/10.1021/acs.jpcc.5b01357

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (80KB)
3.

Download (1MB)
4.

Download (128KB)
5.

Download (73KB)
6.

Download (103KB)

Copyright (c) 2023 И.С. Машковский, Д.П. Мельников, П.В. Марков, Г.Н. Баева, Н.С. Смирнова, Г.О. Брагина, А.Ю. Стахеев