Impact resistance of epoxy composites of reduced flammability with organobentonite nanoparticles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, the maximum synergistic effect of reducing the flammability of epoxy resin according to the oxygen index was established using a non-stoichiometric mixture of melamine and ammonium hydrophosphate. The synergetics of the mixture is due to the formation of heat-resistant ceramic-like structures as a result of thermal degradation of the components. In the present work, the effect of increasing the resistance up to (80 ± 10)% to impulse loads followed by rapid failure (mechanical or rheological explosion) was established for the first time for a polymer composite based on cured epoxy resin with 20% content of phosphorus-nitrogen-containing flame retardants (P,N-antipyrenes) due to the introduction of 0.5–1.5% organobentonite nanoparticles. It is also recorded that the electric current pulses arising from the ultrafast destruction of the “matrix” composite differ in frequency characteristics from the composite with the introduced nanoparticles of organobentonite. For a polymeric composite, one band of radio frequency radiation with a maximum at 2.4 MHz is fixed, and for a composite with introduced organobentonite nanoparticles, bands of radio frequency radiation with maxima at 2.4, 20.9 and 25.3 MHz. A probable mechanism of the observed effect is proposed.

Full Text

Restricted Access

About the authors

Yu. M. Yevtushenko

N.S. Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Email: sh.toirov@ispm.ru
Russian Federation, 117393 Moscow

S. Kh. Toirov

N.S. Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Author for correspondence.
Email: sh.toirov@ispm.ru
Russian Federation, 117393 Moscow

A. I. Aleksandrov

N.S. Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Email: sh.toirov@ispm.ru
Russian Federation, 117393 Moscow

V. G. Shevchenko

N.S. Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Email: sh.toirov@ispm.ru
Russian Federation, 117393 Moscow

References

  1. Zhi M., Yang X., Fan R., Yue S., Zheng L., Liu Q., He Y. // Polym. Degrad. Stab. 2022. V. 201. 109976. https://doi.org/10.1016/j.polymdegradstab.2022.109976
  2. Kamalipour J., Beheshty M.H., Zohuriaan-Mehr M.J. // Iran J. Polym Sci. 2021. V. 34. P. 3–27. https://doi.org/10.22063/jipst.2021.1790
  3. Zaghioul M.M.Y., Zaghioul M.M.Y., Fuseini M. // Polym. Adv. Technol. 2023. V. 34. № 11. P. 3438–3472. https://doi.org/10.1002/pat.6144
  4. Ткачук А.И., Терехов И.В., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 3 (87). https://doi.org/10.18577/2307-6046-2020-0-3-41-48
  5. Ткачук А.И., Афанасьева Е.А. // Труды ВИАМ: электрон. науч.-техн. журн. 2020. № 4–5 (88). https://doi.org/10.18577/2307-6046-2020-0-45-13-21
  6. Bifulco A., Vargnici C.-D., Rosu L., Mustata F., Rosu D., Gaan S. // Polym. Degrad. Stab. 2022. V. 200. 109962. https://doi.org/10.1016/j.polymdegradstab.2022.109962
  7. Барботько С.Л., Вольный О.С., Боченков М.М., Коробейничев О.П., Шмаков А.Г., Тужиков О.О., Буравов Б.А., Аль-Хамзави А., Тужиков О.И., Соснин Е.А., Палецкий А.А., Чернов А.А., Сагитов А.Р., Куликов И.В., Карпов Е.В., Трубачев С.А. // Химическая физика и мезоскопия. 2024. Т. 26. № 1. С. 69–84. https://doi.org/10.62669/17270227.2024.1.7
  8. Evtushenko Yu.M., Goncharuk G.P., Grigoriev Yu.A., Kuchkina I.O., Shevchenko V.G. // Inorg. Mater. Appl. Res. 2021. V. 11. № 5. P. 65–75. http://dx.doi.org/10.30791/1028-978X-2021-5-65-75
  9. Evtushenko Yu.M., Grigoriev Yu.A., Rudakova T.A., Ozerin A.N. // J. Coat. Techn. Res. 2019. V. 16. № 5. P. 1389–1398. https://doi.org/10.1007/s11998-019-00221-6
  10. Александров А.И., Александров И.А., Прокофьев А.И. // Письма в ЖЭТФ. 2013. Т. 97. № 9–10. С. 630–633. https://doi.org/10.7868/S0370274X13090105
  11. Александров А.И., Шевченко В.Г., Александров И.А. // Письма в ЖТФ. 2020. Т. 46. № 7. С. 43–47. https://doi.org/10.21883/PJTF.2020.07.49220.18119
  12. Broadband dielectric spectroscopy. Kremer F., Schonhals A. (Eds.). New York: Springer International Publishing, 2003. 739 p.
  13. Havriliak S., Negami S.A. // Polymer. 1967. V. 8. P. 161–216. https://doi.org/10.1016/0032-3861(67)90021-3
  14. Gade S., Weiss U., Peter M., Sause M. // J. Nondestr. Eval. 2014. V. 33. № 4. P. 711–723. https://doi.org/10.1007/s10921-014-0265-5
  15. Dickinson J., Jensen L., Jahan-Latibari A. // J. Mater. Sci. 1984. V. 19. № 5. P. 1510–1516. https://doi.org/10.1007/BF00563046

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the oxygen index of composites on the content of DAHF in the fire retardant (data spread does not exceed 5%).

Download (81KB)
3. Fig. 2. Dependence of the PRV rheological explosion pressure on the amount of introduced organobentonite (each point corresponds to five identical experiments, the spread of data does not exceed 10%).

Download (81KB)
4. Fig. 3. Fourier transforms of current pulses (envelope curves) and their spectral composition obtained based on the Gavriliak–Negami formula for a polymer composite (2.4 MHz) and for a NOB composite (2.4, 20.9, 25.3 MHz). Green and red dashed lines are approximations based on the Gavriliak–Negami formula.

Download (181KB)
5. Fig. 4. Distribution of dielectric relaxation times g(τ) from log(τ) for the Gavriliak–Negami functions corresponding to peaks at 2.4, 20.9, 25.3 MHz (see dashed lines in Fig. 3).

Download (152KB)

Copyright (c) 2025 Russian Academy of Sciences