Representations of the solutions for volterra integro-differential equations in hilbert spaces
- 作者: Rautian N.A.1,2
 - 
							隶属关系: 
							
- Lomonosov Moscow State University
 - Moscow Center for Fundamental and Applied Mathematics
 
 - 期: 卷 517 (2024)
 - 页面: 85-91
 - 栏目: MATHEMATICS
 - URL: https://edgccjournal.org/2686-9543/article/view/647997
 - DOI: https://doi.org/10.31857/S2686954324030144
 - EDN: https://elibrary.ru/YADJRU
 - ID: 647997
 
如何引用文章
详细
Volterra integro-differential equations with operator coefficients in Hilbert spaces were studied. The relationship has been established between the spectra of operator functions that are the symbols of the specified integro-differential equations and the spectra of generators of semigroups. Representations of solutions for considered integro-differential equations are obtained on the basis of spectral analysis of generators of operator semigroups and corresponding operator-functions.
全文:
作者简介
N. Rautian
Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
							编辑信件的主要联系方式.
							Email: nadezhda.rautian@math.msu.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow; Moscow						
参考
- Kopachevsky N.D., Krein S.G. Operator Approach to Linear Problems of Hydrodynamics. Vol. 2: Nonself-adjoint Problems for Viscous Fluids // Operator Theory: Advances and Applications (Birkhauser Verlag, Basel/Switzerland). 2003. V. 146. 444 p.
 - Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with memory.Theory and applications. New-York – Dordrecht – Heidelberg – London: Springer, 2012. 576 p.
 - Георгиевский Д.В. Модели теории вязкоупругости. М.: ЛЕНАНД, 2023. 144 c.
 - Локшин А.А., Суворова Ю.В. Математическая теория распространения волн в средах с памятью. М.: Изд-во МГУ, 1982. 152 c.
 - Gurtin M.E., Pipkin A.C. General theory of heat conduction with finite wave speed // Arch. Rat. Mech. Anal. 1968. V. 31. P. 113–126.
 - Санчес-Паленсия Э. Неоднородные среды и теория колебаний. М.: Мир, 1984.
 - Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
 - Skubachevskii A.L. Boundary-value problems for elliptic functional-differential equations and their applications // Russian Mathematical Surveys. 2016. V. 71. № 5. P. 801–906.
 - Shamaev A.S., Shumilova V.V. Spectrum of one-dimensional natural vibrations of layered medium consisting of elastic material and viscous incompressible fluid // Moscow University Mathematics Bulletin. 2020. V. 75. № 4. P. 172–176.
 - Rautian N.A. On the Properties of Semigroups Generated by Volterra Integro-Differential Equations with Kernels Representable by Stieltjes Integrals // Differential Equations. 2021. V. 57. № 9. P. 1231–1248.
 - Rautian N.A. Studying Volterra Integro-Differential Equations by Methods of the Theory of Operator Semigroups // Differential Equations. 2021. V. 57. № 12. P. 1665–1684.
 - Rautian N.A., Vlasov V.V. Spectral Analysis of the Generators for Semigroups Associated with Volterra Integro-Differential Equations // Lobachevskii Journal of Mathematics. 2023. V. 44. № 3. P. 926–935.
 - Vlasov V.V., Rautian N.A. Application of Semigroup Theory to the Study of Volterra Integro-Differential Equations // Differential Equations. 2022. V. 58. № 4. P. 571–575.
 - Vlasov V.V., Rautian N.A. Well-Posed Solvability of Volterra Integro-Differential Equations in Hilbert Spaces// Differential Equations. 2022. V. 58. № 10. P. 1410–1426.
 - Крейн С.Г. Линейные дифференциальные уравнения в банаховых пространствах. М.: Наука, 1967. 464 с.
 - Engel K.J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York: Springer-Verlag, 2000. 586 p.
 - Гельфанд И.М., Виленкин Н.Я. Некоторые применения гармонического анализа. Оснащенные гильбертовы пространства. М.: Физ.-мат. лит., 1961.
 - Маркус А.С. Введение в спектральную теорию полиномиальных операторных пучков. Кишинев: Штиница, 1986.
 - Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве. М.: Наука, 1965.
 - Радзиевский Г.В. Асимптотика распределения характеристических чисел оператор-функций, аналитических в угле // Математический сборник. – 1980. Т. 112. № 3. C. 396–420.
 
补充文件
				
			
						
						
						
						
					


