CO2 Emission from oligotrophic peatland soil of Western Siberia


The data on diurnal and seasonal carbon dioxide emission rates determined by static chamber technique from the surface of oligotrophic mire in southern taiga in Western Siberia in 2005-2007 are presented. The general dynamics of CO2 emission during the summer period is the increase of CO2 emission intensity to the middle of summer and a subsequent decrease towards autumn. The mean values of CO2 emission was 118 mg CO2 m-2 h-1. Analysis of diurnal variations in CO2 emission has showed that the maximum CO2 flux has been observed at 4 PM, and the minimum flux at 7 AM. The average magnitude of daily fluctuations of CO2 emission was 74 mg CO2 m-2 h-1. Ambient CO2 concentration has maximum at 4 AM and minimum at 4 PM. The mean magnitude of CO2 background concentration was about 160 ppm. Established relationships between air temperatures and CO2 flux were used to estimate CO2 fluxes between measurement periods. It was found that the best time interval for measuring CO2 fluxes in summer time is from 10 AM to 1 PM.

About the authors

Evgeniya Aleksandrovna Golovatskaya

Author for correspondence.

Egor Anatol'evich Dyukarev



  1. Alm J., Talanov A., Saarnio S., Silvola J., Ikkonen E., Aaltonen H., Nykanen H., Martikainen P.J. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen // Oecologia. V.110. P.423-31.
  2. Aurela M., Laurila T., Tuovinen J.-P. 2001. Seasonal CO2 balances of a subarctic mire // J. Geophys. Res. V.106 (D2). P.1623-1637.
  3. Baldocchi, D. D., Falge E., Gu L., Olson R., Hollinger D. Y., Running S. W. et. al.. 2001. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities // Bull. Am. Meteorol. Soc. V.82. P., 2415-2434.
  4. Bellisario L.M., Moore T.R., Bubier J.L. 1998. Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba // Ecoscience. V.5. P.534-541.
  5. Botch M.S., Kobak K.I., Vinson T.S., Kolchugina T.P. 1995. Carbon pools and accumulation in peatlands of the former Soviet Union // Global Biogeochem Cycles. V.9. N.1. P.37-46.
  6. Bridgham S.D., Updegraff K., Pastor J. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands //. Ecology. V.79. : P.1545-1561.
  7. Bubier J.L., Crill P.M., Moore T.R., Savage K., Varner RK. 1998. Seasonal patterns and controls on net ecosystems CO2CO2 exchange in a boreal peatland complex // Global Biogeochem Cycles. V.12. P.703-714.
  8. Bubier J.L., Crill P.M., Mosedale A., Frolking S., Linder E. 2003. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers // Global Biogeochem Cycles. V.17. N.2. P.1066. doi: 10.1029/2002GB001946.
  9. Bubier J.L., Bhatia G., Moore T.R., Roulet N.G., Lafleur P.M. 2003a. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada // Ecosystems. V.6. P.353-367.
  10. Canadell, J.G., H.A. Mooney, D.D. Baldocchi, J.A. Berry, J.R. Ehleringer, C.B. Field, S.T. Gower, D.Y. Hollinger, J.E. Hunt, R.B. Jackson, S.W. Running, G.R. Shaver, W. Steffen, S.E. Trumbore, R. Valentini, B.Y. Bond. 2000. Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding // Ecosystems. V. 3. P.:115-130.
  11. Chapman S.J., Kanda K., Tsuruta H., Minami K. 1996. Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands: a comparison of peat and paddy soils // Soil. Sci. Plant. Nutr. V.42. P.269-277.
  12. Christensen T.R., Jonasson S., Michelsen A., Callaghan T.V., Havstrom M. 1998. Environmental controls on soil respiration in the Eurasian and Greenlandic Arctic // J. Geophys. Res. V.103. P.15-29.
  13. Efremov S.P., Efremova T.T., Melentieva N.V. 1994. Carbon storages in peatland ecosystems // Carbon in forest and peatland ecosystems of Russia, Krasnoyarsk. P. 128-139. (in Russian) (Ефремов С.П., Ефремова Т.Т., Мелентьева Н.В. 1994. Запасы углерода в экосистемах болот / Углерод в экосистемах лесов и болот России. [Под ред. В.А. Алексеева и Р.А. Бердси]. Красноярск. С. 128-139.)
  14. Efremov S.P., Efremova T.T. 2007. Experimental diagnostics of peat accumulation and transformation of organic matter in bog-forest ecosystems of Western Siberia // West Siberian peatlands and Carbon Cycle Past and Present. Proce.eding of the Second Int.ernational Field Symp. osium. P. 95-97. (in Russian) (Ефремов С.П., Ефремова Т.Т. 2007. Экспериментальная диагностика торфонакопления и трансформации органического вещества в лесоболотных экосистемах Западной Сибири / Материалы Второго международного полевого симпозиума Торфяники Западной Сибири и цикл углерода: прошлое и настоящее. Томск: Изд-во НТЛ., 2007, С. 95-97.)
  15. Elberling B. 2007. Annual soil CO2 effluxes in the High Arctic: The role of snow thickness and vegetation type // Soil Biology & Biochem. V.39. P.646-654.
  16. Forbrich I., Kutzbach L., Hormann A., Wilmking M. 2010. A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands // Soil Biol. & Biochem. V.42. P. 507-515.
  17. Golovatskaya E.A., Porokhina E.V. 2005. Botany with Fundamental Phytocoenology. Biologic Productivity of Bog Biogeocoenoses: A Handbook. TGPU. Tomsk. (in Russian) (Головацкая Е.А., Порохина Е.В. 2005. Ботаника с основами фитоценологии: Биологическая продуктивность болотных биогеоценозов. Учеб.-метод. пособие. - Томск: Изд-во Том. гос. пед. ун-та. 64 с.)
  18. Golovatskaya E.A., Dyukarev E.A., Ippolitov I.I., Kabanov M.V. 2008. The effect of landscape and weather conditions on CO2 emission in peatland ecosystems // Doklady Earth Sci. V.418. N.1. P.187-190. (Головацкая Е.А., Дюкарев Е.А., Ипполитов И.И., Кабанов М.В. 2008. Влияние ландшафтных и гидрометеорологических условий на эмиссию СО2 в торфоболотных экосистемах // Доклады Академии Наук.№4. С.1-4.)
  19. Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming // Ecol. Appl. V.1. P.182-195.
  20. Griffis T.J., Rouse W.R., Waddington J.M. 2000. Interannual variability of net ecosystem CO2 exchange at a subarctic fen // Global Biogeochem Cycles. V.14. P.1109-1121.
  21. Grogan P., Jonasson S. 2006. Ecosystem CO2 production during winter in Swedish subarctic region: the relative importance of climate and vegetation type // Global Change Biology. V.12. N.8. P.1479-1495.
  22. Heikkinen J.E.P., Virtanen T., Huttunen J.T., Elsakov V., Martikainen P. J. 2004. Carbon balance in East European tundra // Global Biogeochem. Cycles. V.18. GB1023. doi: 10.1029/2003GB002054.
  23. Hirano T. 2005. Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest // Global Biogeochem. Cycles. V.19. GB2011. doi: 10.1029/2004GB002259.
  24. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001. The Scientific Basis. Contribution of Working Croup I to the Third Assessment Report. Cambridge University Press, New York.
  25. Johnson L.C., Shaver G.R., Giblin A.E., Nadelhoffer K.J., Rastetter E.R., Laundre J.A., Murray G.L. 1996. Effects of drainage and temperature on carbon balance of tussock tundra micrcosms // Oecologia. V.108. P.737-748.
  26. Kabanov M.V. (ed.). 2002. The Great Vasyugan Bog. Current State and Evolution Processes. 2002. Tomsk: IOA SO RAN. 350 p. (in Russian) (Большое Васюганское Болото. Современное состояние и процессы развития. 2002. [Под ред. М.В Кабанова]. Томск: Изд-во ИОА СО РАН. 229 с.)
  27. Kabanov M.V. 2006. Regional aspects of modern climatology to the results of analysis of observable natural and climatic changes in Siberia // Atmospheric and Ocean Optics. V.19. N.11. P. 927-933. (in Russian) (Кабанов М.В. 2006. Региональные аспекты современной климатологии по результатам анализа наблюдаемых природно-климатических изменений в Сибири // Оптика атмосферы и океана. Т.19. № 11. С.927-933.
  28. Kalyuzhny I.L., Lavrov S.A. Emission of carbon dioxide at oligotrophic bog massif // A collection of papers on hydrology. №27. Saint-Peterburg. GMI. P. 10-24. Калюжный И.Л., Лавров С.А. Эмиссия двуокиси углерода на олиготрофном болотном массиве // Сборник работ по гидрологии № 27. СПб. ГМИ. С. 10-24. (in Russian)
  29. Karelin D.V., Zamolodchikov D.G. 2008. Carbon exchange in cryogenic ecosystems. Moscow: Nauka. 344 p. (in Russian) (Карелин Д.В. Замолодчиков Д.Г. 2008. Углеродный обмен в криогенных экосистемах. М.:Наука. 344 с.)
  30. Kim J., Verma S.B. 1992. Soil surface CO2 flux in a Minnesota peatland // Biogeochem. V.18. P.37-51.
  31. Kurganova I., Teepe R., Loftfield N. 2007. Influence of freeze-thaw events on carbon dioxide emission from soils at different moisture and land use // Carbon Balance and Management. V.2. N.2. doi: 10.1186/1750-0680-2-2.
  32. Lafleur P.M., Roulet N.T., Bubier J.L., Frolking S., Moore T.R. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog // Global Biogeochem. Cycles. V.17. N.2. P.1036. doi: 10.1029/2002GB001983.
  33. Lafleur P.M., Moore T.R., Roulet N.T., Frolking S. 2005. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table // Ecosystems. V.8. P.619-629.
  34. McDermit D.K., Xu L., Madsen R., Demetriades-Shah T., Garcia R., Furtaw M. 2007. Feedback of ambient air CO2 concentration on soil CO2 efflux // Geophysical Research Abstracts. V. 9. P.10613.
  35. McKenzie C., Schiff S., Aravena R., Kelly C., Louis V.S. 1998. Effect of temperature on production of CH4 and CO2 from peat in a natural and flooded boreal forest wetland // Clim. Change. V.40. P.247-266.
  36. Moore T.R., Dalva M. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils // J. Soil Sci. V.44. P.651-664.
  37. Moore T.R., Roulet N.T., Waddington J.M. 1998. Uncertainty in predicting the effect of climactic change on the carbon cycling of Canadian peatlands // Clim. Change. V.40. P.229-245.
  38. Naumov A.V. 1994. Seasonal dynamics and CO2 emission intensity form soils of Siberia // Eurasian Soil Science. V.12. P.77-83. (Наумов А.В. 1994. Сезонная динамика и интенсивность выделения СО2 в почвах Сибири // Почвоведение. № 12. С.77-83.)
  39. Naumov A.V. 2004. Carbon budget and emission of greenhouse gases in bog ecosystems of Western Siberia // Eurasian Soil Science. V.37. P.58-64.
  40. Naumov A.V. 2009. Soil respiration. Constituents, ecological functions, geographic patterns. Novosibirsk. SB RAS publ. house. P. 207. (in Russian) Наумов А.В. 2009. Дыхание почвы. Составляющие, экологические функции, географические закономерности. Новосибирск. Изд-во СО РАН. С. 207.
  41. Pomaskina L.V., Lubnina E.V., Zorina S.Y., Kotova L.G., Chortolomey N.V. 1996. Dynamics of CO2 emission from the gray-forest soil in forest-steppe in Pribaikalie // Eurasian Soil Sci. V.12. P.1454-1458. (in Russian) (Помазкина Л.В., Лубнина Е.В., Зорина С.Ю., Котова Л.Г., Хортоломей Н.В. 1996. Динамика выделения СО2 серой лесной почвой в лесостепи Прибайкалья. // Почвоведение. № 12. С. 1454-1458.)
  42. Sheng Y., Smith L.C., MacDonald G.M., Kremenetski K.V., Frey K.E., Velichko A.A., Lee M., Beilman D.W., Dubinin P. 2004. A high-resolution GIS-based inventory of the west Siberian peat carbon pool // Global Biogeochem. Cycles. V.18. P. 1-14. GB3004.
  43. Silvola J., Alm J., Ahlholm U., Nykanen H., Martikainen P.J. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions // J. Ecol. V.84. P.219-228.
  44. Smagin A.V. 2005. Gas phase of soils. Moscow: Izd-vo MGU. 301 p. (in Russian) (Смагин А.В. 2005. Газовая фаза почв. Москва: Изд-во МГУ. 301 с.)
  45. Strack M., Waddington J.M., Rochefort L., Tuittila E.-S. 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown // J. Geophys. Res. V.111. G02006. doi: 10.1029/2005JG000145.
  46. Subke J.-A., Reichstein M., Tenhunen J.D. 2003. Explaining temporal variations in soil CO2 efflux in a mature spruce forest in Southern Germany // Soil Biology and Biochemistry. V.35. P.1467-1483.
  47. Thormann M.N., Bayley S.E.. 1997. Decomposition along a moderate- rich fen-marsh peatland gradient in boreal Alberta, Canada // Wetlands. V.17. P.123-137.
  48. Titlyanova A.A., Bulavko G.I., Kudryashova S.Ya., Naumov A.V., Smirnov V.V., Tanasienko A.A. 1998. Storages and losses of organic carbon in Siberian soils // Eurasian Soil Sci. V.1. P.51-59. (in Russian) (Титлянова А.А., Булавко Г.И., Кудряшова С.Я., Наумов А.В., Смирнов В.В., Танасиенко А.А. 1998. Запасы и потери органического углерода в почвах Сибири. Почвоведение. № 1. С.51-59.)
  49. Updegraff K., Bridgham S.D., Pastor J., Weishampel P. 1998. Hysteresis in the temperature response of carbon dioxide and methane production in peat soils // Biogeochem. V.43. P.253-272.
  50. Updegraff K., Pastor J., Bridgham S.D., Johnston C.A. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands // Ecol. Appl. V.5. P.151-163.
  51. Vomperskii S.E. 1994. Peatlands role in the carbon cycle // Biogeocenotic features of peatlands and their rational use. Moscow: Nauka. P. 5-37. (in Russian) (Вомперский С.Э. 1994. Роль болот в круговороте углерода // Биогеоценотические особенности болот и их рациональное использование. М.: Наука. С.5-37.)
  52. Waddington J.M., Roulet N.T. 1996. Atmosphere - wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland // Global Biogeochem. Cycles. V.10. P.233-245.
  53. Whiting G.J., Chanton J.P. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration // Tellus. V.53B. P.521-528. doi: 10.1034/j.1600-0889.2001.530501.x
  54. Zavarzin G.A. (ed.). 2007. Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia. Moscow: Nauka. 315 p. (in Russian) (Пулы и потоки углерода в наземных экосистемах России. 2007. [отв.ред. Г.А.Заварзин] М.: Наука. 315 с.)



Abstract - 322

PDF (Russian) - 204


Article Metrics

Metrics Loading ...


Copyright (c) 2010 Golovatskaya E.A., Dyukarev E.A., Golovatskaya E.A., Dyukarev E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies