Mathematical models of methane consumption by soils: A review

Обложка

Цитировать

Полный текст

Аннотация

Проведен подробный аналитический обзор наиболее известных математических моделей, оценивающих поглощение метана автоморфными почвами в наземных экосистемах. Рассмотрены простейшие варианты предлагаемых в научной литературе инвентаризаций окисления метана почвами, аналитические модели, численные модели, а также применение ансамблей моделей для решения проблемы математического описания поглощения (окисления) метана разными типами почв. Рассмотрены основные проблемы моделирования рассматриваемого природного процесса, перечислены преимущества, недостатки и ограничения конкретных моделей и подходов, а также критически оценена их практическая применимость. Для аналитических моделей приведены списки входных переменных. Рекомендован ансамблевый подход, который ранее не применялся для решения проблемы поглощения метана почвами.

Об авторах

M. V. Glagolev

Московский государственный университет им. М.В. Ломоносова; Институт лесоведения РАН; Югорский государственный университет

Email: m_glagolev@mail.ru
Россия, г. Москва; пос. Успенское (Московская область);г. Ханты-Мансийск

I. E. Terentieva

University of Calgary

Email: kleptsova@gmail.com
Канада, Calgary, Canada

A. F. Sabrekov

Югорский государственный университет

Email: sabrekovaf@gmail.com
Россия, г. Ханты-Мансийск

D. V. Il’yasov

Югорский государственный университет

Email: d_ilyasov@ugrasu.ru
Россия, г. Ханты-Мансийск

D. G. Zamolodchikov

Центр по проблемам экологии и продуктивности лесов РАН

Email: dzamolod@mail.ru
Россия, г. Москва

D. V. Karelin

Институт географии РАН; Центр по проблемам экологии и продуктивности лесов РАН

Автор, ответственный за переписку.
Email: dkarelin7@gmail.com
Россия, г. Москва; г. Москва

Список литературы

  1. Arah J.R.M., Stephen K.D. 1998. A model of the processes leading to methane emission from peatland. Atmospheric Environment, 32: 3257-3264. https://doi.org/10.1016/S1352-2310(98)00052-1
  2. Arora V.K., Melton J.R., Plummer D. 2018. An assessment of natural methane fluxes simulated by the CLASS-CTEM model. Biogeosciences, 15: 4683-4709. https://doi.org/10.5194/bg-15-4683-2018
  3. Bailey N.T.J. 1967. The mathematical approach to biology and medicine. John Wiley and Sons, London etc.
  4. Bergamaschi P., Karstens U., Manning A.J., Saunois M., Tsuruta A., Berchet A., Vermeulen A.T., Arnold T., Janssens-Maenhout G., Hammer S., Levin I., Schmidt M., Ramonet M., Lopez M., Lavric J., Aalto T., Chen H., Feist D.G., Gerbig C., Haszpra L., Hermansen O., Manca G., Moncrieff J., Meinhardt F., Necki J., Galkowski M., O’Doherty S., Paramonova N., Scheeren H.A., Steinbacher M., Dlugokencky E. 2018. Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics, 18: 901-920. https://doi.org/10.5194/acp-18-901-2018
  5. Bloch A. 2003. Murphy’s law. Perigee, New York.
  6. Bohn T.J. 2013. The effect of small-scale heterogeneity on the large-scale dynamics of west siberian wetland carbon fluxes. University of Washington. PhD thesis.
  7. Born M., Dörr H., Levin I. 1990. Methane consumption in aerated soils of the temperate zone. Tellus, 42B: 2-8. https://doi.org/10.3402/tellusb.v42i1.15186
  8. Cicerone R.J., Shetter J.D., Delwiche C.C. 1983. Seasonal variation of methane flux from a California rice paddy. Journal of Geophysical Research, 88: 11022-11024.
  9. Claeskens G., Hjort N.L. 2008. Model selection and model averaging. Cambridge University Press, Cambridge etc. 312 pp.
  10. Curry C.L. 2007. Modeling the soil consumption of atmospheric methane at the global scale. Global Biogeochemical Cycles, 21: GB4012. https://doi.org/10.1029/2006GB002818
  11. Curry C.L. 2009. The consumption of atmospheric methane by soil in a simulated future climate. Biogeosciences, 6(11): 2355-2367. https://doi.org/10.5194/bg-6-2355-2009
  12. Davydov D.K., Dyachkova A.V., Simonenkov D.V., Fofonov А.V., Maksutov S.S. 2021. Application of the automated chamber method for longterm measurements CO2 and CH4 fluxes from wetland ecosystems of the West Siberia. Environmental Dynamics and Global Climate Change, 12(1): 5-14.
  13. Del Grosso S.J., Parton W.J., Mosier A.R., Ojima D.S., Potter C.S., Borken W., Brumme R., Butterbach-Bahl K., Crill P.M., Dobbie K., Smith K.A. 2000. General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochemical Cycles, 14(4): 999-1019.
  14. Dörr H., Katruff L., Levin I. 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 26: 697-713. https://doi.org/10.1016/0045-6535(93)90454-D
  15. Durinx M., Metz J.A.J., Meszéna G. 2008. Adaptive dynamics for physiologically structured population models. Journal of Mathematical Biology, 56(5): 673-742. https://doi.org/10.1007/s00285-007-0134-2
  16. Dutaur L., Verchot L.V. 2007. A global inventory of the soil CH4 sink. Global Biogeochemical Cycles, 21: GB4013. https://doi.org/10.1029/2006GB002734
  17. Ertekin T., Abou-Kassem J.H., King G.R. 2001. Basic applied reservoir simulation. Society of Petroleum Engineers, Richardson.
  18. Exbrayat J.-F., Bloom A.A., Falloon P., Ito A., Smallman T.L., Williams M. 2018. Reliability ensemble averaging of 21st century projections of terrestrial net primary productivity reduces global and regional uncertainties. Earth System Dynamics, 9: 153-165. https://doi.org/10.5194/esd-9-153-2018
  19. Fan Z., McGuire A.D., Turetsky M.R., Harden J.W., Waddington J.M., Kane E.S. 2013. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology, 19: 604-620. https://doi.org/10.1111/gcb.12041
  20. Filippov I.V., Glagolev М.V., Sabrekov А.F. 2015. An attempt to use an ensemble of simple mathematical models in one problem of microbiological kinetics. In: Matematicheskoe modelirovanie v ekologii. Materialy Chetvertoi Natsional'noi nauchnoi konferentsii s mezhdunarodnym uchastiem. IFKhIBPP RAN, Pushchino, pp. 187-188. (In Russian). [Филиппов И.В., Глаголев М.В., Сабреков А.Ф. 2015. Попытка использования ансамбля простейших математических моделей в одной задаче микробиологической кинетики // Математическое моделирование в экологии. Материалы Четвертой Национальной научной конференции с международным участием, 18-22 мая 2015 г. Пущино: ИФХиБПП РАН. С. 187-188.]
  21. Fung I., John J., Lerner J., Matthews E., Prather M., Steele L.P., Fraser P.J. 1991. Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research, 96(D7): 13033-13065. https://doi.org/10.1029/91JD01247
  22. Galmarini S., Kioutsioukis I., Solazzo E., Alyuz U., Balzarini A., Bellasio R., Benedictow A.M.K., Bianconi R., Bieser J., Brandt J., Christensen J.H., Colette A., Curci G., Davila Y., Dong X., Flemming J., Francis X., Fraser A., Fu J., Henze D.K., Hogrefe C., Im U., Vivanco M.G., Jiménez-Guerrero P., Jonson J.E., Kitwiroon N., Manders A., Mathur R., Palacios-Peña L., Pirovano G., Pozzoli L., Prank M., Schultz M., Sokhi R.S., Sudo K., Tuccella P., Takemura T., Sekiya T., Unal A. 2018. Two-scale multi-model ensemble: is a hybrid ensemble of opportunity telling us more? Atmospheric Chemistry and Physics, 18: 1-18. https://doi.org/10.5194/acp-18-1-2018.
  23. Gerald C.F., Wheatley P.O. 1994. Applied numerical analysis. ADDISON-WESLEY PUBLISHING, Reading etc. P. 2.
  24. Glagolev M.V. 2006. Mathematical modelling of the methane-oxidation in soil. In: Transactions of Vinogradsky Institute of Microbiology RAS. Nauka, Moscow, pp. 315-341. (In Russian). [Глаголев М.В. 2006. Математическое моделирование метанокисления в почве // Труды института микробиологии им. С.Н. Виноградского. М.: Наука. С. 315-341].
  25. Glagolev M.V. 2008. The emission of methane: ideology and methodology of «standard model» for Western Siberia. Environmental Dynamics and Global Climate Change, S1: 176-190. (In Russian). [Глаголев М.В. 2008. Эмиссия метана: идеология и методология «стандартной модели» для Западной Сибири // Динамика окружающей среды и глобальные изменения климата. № S1. C. 176-190] https://doi.org/10.17816/edgcc11S176-190
  26. Glagolev M.V. 2010. CH4 emission from bog soils in Western Siberia: from soil profile to region: dis. cand. biol. sciences. Moscow. 211 рр. (In Russian). [Глаголев М.В. 2010. Эмиссия СН4 болотными почвами Западной Сибири: от почвенного профиля до региона: дисс. … канд. биол. наук. Москва. 211 с.]
  27. Glagolev M.V. 2021. Mathematical modeling in soil biokinetics. Environmental Dynamics and Global Climate Change, 12(2): 123-144. https://doi.org/10.17816/edgcc90123 (In Russian).
  28. Glagolev M.V., Filippov I.V. 2011. Inventory of soil methane consumption. Environmental Dynamics and Global Climate Change, 2(2): 3-22. https://doi.org/10.17816/edgcc221 (In Russian).
  29. Glagolev M.V., Filippov I.V., Krivenok L.A., Maksyutov S.S. 2014. CH4 flux estimation from Russians soils based on a set of simple models. In: Proceedings of the Fourth International Field Symposium, (A.A. Titlyanova, M.I. Dergacheva, eds.) Publishing house of Tomsk University, Tomsk, pp. 163-165. (In Russian). [Глаголев М.В., Филиппов И.В., Кривенок Л.А., Максютов Ш.Ш. 2014. Оценка потока СН4 из почв России набором простейших моделей // Торфяники Западной Cибири и цикл углерода: прошлое и настоящее Материалы Четвёртого Международного полевого симпозиума / Под ред. А.А. Титляновой и М.И. Дергачевой. С. 163-165.]
  30. Glagolev M.V., Kleptsova I.E. 2009. Methane emission in the forest-tundra: towards the “standard model” (Aa2) for West Siberia. Tomsk State Pedagogical University Bulletin, 3(81): 77-81. (In Russian). [Глаголев М.В., Клепцова И.Е. 2009. Эмиссия метана в лесотундре: к созданию «стандартной модели» (Аа2) для Западной Сибири // Вестник Томского государственного педагогического университета. № 3(81). С. 77-81.]
  31. Glagolev M.V., Suvorov G.G., Il’yasov D.V., Sabrekov A.F., Terentieva I.E. 2022. What is the maximal possible soil methane uptake? Environmental Dynamics and Global Climate Change, 13(3): 123-141. https://doi.org/10.18822/edgcc133609 (In Russian).
  32. Grant R.F. 1998. Simulation of methanogenesis in the mathematical model Ecosys. Soil Biology and Biochemistry, 30: 883-896. https://doi.org/10.1016/S0038-0717(97)00218-6
  33. Grant R.F. 1999. Simulation of methanotrophy in the mathematical model Ecosys. Soil Biology and Biochemistry, 31: 287-297. https://doi.org/10.1016/S0038-0717(98)00119-9
  34. Grant R.F., Roulet N.T. 2002. Methane efflux from boreal wetlands: Theory and testing of the ecosystem model Ecosys with chamber and tower flux measurements. Global Biogeochemical Cycles, 16(4): 1054. https://doi.org/10.1029/2001GB001702.
  35. Hagedorn R., Doblas-Reyes F.J., Palmer T.N. 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting – I. Basic concept. Tellus, 57A: 219-233. https://doi.org/10.3402/tellusa.v57i3.14657
  36. Hein R., Crutzen P.J., Heimann M. 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochemical Cycles, 11(1): 43-76.
  37. Ito A., Inatomi M. 2012. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences, 9: 759-773. https://doi.org/10.5194/bg-9-759-2012
  38. Jeffers J.N.R. 1978. An introduction to systems analysis: with ecological applications. Edward Arnold, London.
  39. Karol I.L., Kiselev А.А. 2013. Climate paradoxes. Ice age or scorching heat? АSТ-PRESS КNIGА, Moscow, 288 pp. (In Russian). [Кароль И.Л., Киселев А.А. 2013. Парадоксы климата. Ледниковый период или обжигающий зной? М.: АСТ-ПРЕСС КНИГА. 288 с.]
  40. Keller M., Mitre M.E., Stallard R.F. 1990. Consumption of atmospheric methane in soils of Central Panama: Effects of agricultural development. Global Biogeochemical Cycles, 4: 21-27. https://doi.org/10.1029/GB004i001p00021
  41. Khvorostyanov D.V., Krinner G., Ciais P., Heimann M., Zimov S.A. 2008. Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition. Tellus Series B: Chemical and Physical Meteorology, 60(B2): 250-264. https://doi.org/10.1111/j.1600-0889.2007.00333.x
  42. King G.M., Schnell S. 1994. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Applied and Environmental Microbiology, 60: 3508-3513. https://doi.org/10.1128/aem.60.10.3508-3513.1994
  43. Kinney C.A., Mosier A.R., Ferrer I., Furlong E.T., Mandernack K.W. 2004a. Effects of the fungicides mancozeb and chlorothalonil on fluxes of CO2, N2O, and CH4 in a fertilized Colorado grassland soil. Journal of Geophysical Research, 109: D05303. https://doi.org/10.1029/2003JD003655
  44. Kinney C.A., Mosier A.R., Ferrer I., Furlong E.T., Mandernack K.W. 2004b. Effects of the herbicides prosulfuron and metolachlor on fluxes of CO2, N2O, and CH4 in a fertilized Colorado grassland soil. Journal of Geophysical Research, 109: D05304. https://doi.org/10.1029/2003JD003656
  45. Klemedtsson Å.K., Klemedtsson L. 1997. Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biology and Fertility of Soils, 25: 296-301. https://doi.org/10.1007/s003740050318
  46. Kokhanovskiy V.P., Leshkevich Т.Г., Matyash Т.П., Fatkhi Т.Б. 2007. Fundamentals of the philosophy of science. Feniks, Rostov-on-Don, 608 pp. (In Russian). [Кохановский В.П., Лешкевич Т.Г., Матяш Т.П., Фатхи Т.Б. 2007. Основы философии науки. Ростов н/Д.: Феникс. 608 с.]
  47. Kravchenko I.K. 2002. Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant and Soil, 242: 157-162. https://doi.org/10.1023/A:1019614613381
  48. Kumaraswamy S., Rath A.K., Satpathy S.N., Ramakrishnan B., Adhya T.K., Sethunathan N. 1998. Influence of the insecticide carbofuran on the production and oxidation of methane in a flooded rice soil. Biology and Fertility of Soils, 26: 362-366. https://doi.org /10.1007/s003740050389
  49. Lapko V.A. 2002. Nonparametric collectives of resolving rules. Nauka, Novosibirsk, 168 pp. (In Russian). [Лапко В.А. 2002. Непараметрические коллективы решающих правил. Новосибирск: Наука. 168 с.]
  50. Leffelaar P.A. (ed.) 1993. On systems analysis and simulation of ecological processes: with examples in CSMP and Fortran. Kluwer Academic Publishers, Dordrecht etc.
  51. Le Mer J., Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37: 25-50. https://doi.org/10.1016/S1164-5563(01)01067-6
  52. Li C. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems, 58: 259-276. https://doi.org/10.1023/A:1009859006242
  53. Li C., Aber J., Stange F., Butterbach-Bahl K., Papen H. 2000. A process-oriented model of N2O and NO emissions from forest soils: 1. Model development. Journal of Geophysical Research, 105(D4): 4369-4384. https://doi.org/10.1029/1999JD900949
  54. Mavrina L.A. 1966. The oxidation of hydrocarbons by microorganisms. In: The Biology of the Autotrophic Microorganisms, (E.N. Kondratjeva, M.M. Telitchenko, eds). Publishing house of the Moscow University, Moscow, pp. 192-202. (In Russian). [Маврина Л.А. 1966. Окисление углеводородов микроорганизмами // Биология автотрофных микроорганизмов / Под ред. Е.Н. Кондратьевой и М.М. Телитченко. М.: Изд-во МГУ. С. 192-202]
  55. Mezentsev V.S., Karnatsevich I.V. 1969. Humidity of the West Siberian Plain. Gidrometeoizdat, Leningrad. (In Russian). [Мезенцев В.С., Карнацевич И.В. 1969. Увлажненность Западно-Сибирской равнины. Л.: Гидрометеоиздат.]
  56. Millington R.J., Shearer R.C. 1971. Diffusion in aggregated porous media. Soil Science, 111(6): 372-378. https://doi.org/10.1016/0169-7722(93)90040-Y
  57. Moldrup P., Chamindu Deepagoda T.K.K., Hamamoto S., Komatsu T., Kawamoto K., Rolston D.E., de Jonge L.W. 2013. Structure-dependent water-induced linear reduction model for predicting gas diffusivity and tortuosity in repacked and intact soil. Vadose Zone Journal, 12(3): 1-11. https://doi.org/10.2136/vzj2013.01.0026
  58. Morel X., Decharme B., Delire C., Krinner G., Lund M., Hansen B.U., Mastepanov M. 2019. A new process-based soil methane scheme for land surface modeling: Evaluation over arctic field sites with the ISBA land surface model. Journal of Advances in Modeling Earth Systems, 11: 293-326. https://doi.org/10.1029/2018MS001329
  59. Murguia-Flores F., Arndt S., Ganesan A.L., Murray-Tortarolo G.N., Hornibrook E.R.C. 2018. Soil methanotrophy model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil. Geoscientific Model Development, 11: 2009-2032. https://doi.org/10.5194/gmd-11-2009-2018
  60. Oh Y., Zhuang Q., Liu L., Welp L.R., Lau M.C.Y., Onstott T.C., Medvigy D., Bruhwiler L., Dlugokencky E.J., Hugelius G., D’Imperio L., Elberling B. 2020. Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature Climate Change, 10: 317-321. doi: https://doi.org/10.1038/s41558-020-0734-z
  61. Pochon J., de Barjac H. 1958. Traité de Microbiologie des Soils. Dunod, Paris.
  62. Potter C.S., Davidson E.A., Verchot L.V. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere, 32: 2219-2246. https://doi.org/10.1016/0045-6535(96)00119-1
  63. Potter C.S., Randerson J.T., Field C.B., Matson P.A., Vitousek P.M., Mooney H.A., Klooster S.A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7: 811-841. https://doi.org/10.1029/93GB02725
  64. Poulter B., Bousquet P., Canadell J.G., Ciais P., Peregon A., Saunois M., Arora V.K., Beerling D.J., Brovkin V., Jones C.D., Joos F., Gedney N., Ito A., Kleinen T., Koven C.D., McDonald K., Melton J.R., Peng C., Peng S., Prigent C., Schroeder R., Riley W.J., Saito M., Spahni R., Tian H., Taylor L., Viovy N., Wilton D., Wiltshire A., Xu X., Zhang B., Zhang Z., Zhu Q. 2017. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 12: 094013. https://doi.org/10.1088/1748-9326/aa8391
  65. Ridgwell A.J., Marshall S.J., Gregson K. 1999. Consumption of atmospheric methane by soils: A prosess-based model. Global Biogeochemical Cycles, 13(1): 59-70. https://doi.org/10.1029/1998GB900004
  66. Riley W.J., Subin Z.M., Lawrence D.M., Swenson S.C., Torn M.S., Meng L., Mahowald N.M., Hess P. 2011. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8: 1925-1953. https://doi.org/10.5194/bg-8-1925-2011
  67. Sabrekov A.F., Filippov I.V., Dyukarev E.A., Zarov E.A., Kaverin A.A., Glagolev M.V., Terentieva I.E., Lapshina E.D. 2022. Hot spots of methane emission in West Siberian middle taiga wetlands disturbed by petroleum extraction activities // Environmental Dynamics and Global Climate Change, 13(3): 142-155.
  68. Sabrekov A.F., Glagolev M.V., Alekseychik P.K., Smolentsev B.A., Terentieva I.E., Krivenok L.A., Maksyutov S.S. 2016. A process-based model of methane consumption by upland soils. Environmental Research Letters, 11: 075001. https://doi.org/10.1088/1748-9326/11/7/075001
  69. Sabrekov A.F., Glagolev M.V., Fastovets I.A., Smolentsev B.A., Il’yasov D.V., Maksyutov Sh.Sh. 2015. Relationship of methane consumption with the respiration of soil and grass–moss layers in forest ecosystems of the southern taiga in Western Siberia. Eurasian Soil Science, 48(8): 841-851. https://doi.org/10.1134/S1064229315080062
  70. Sabrekov A.F., Kleptsova I.E., Glagolev M.V., Maksyutov Sh.Sh., Machida T. 2011. Methane emission from middle taiga oligotrophic hollows of Western Siberia. Tomsk State Pedagogical University Bulletin, 5(107): 135-143.
  71. Saggar S., Hedley C.B., Giltrap D.L., Lambie S.M. 2007. Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheepgrazed pasture. Agriculture, Ecosystems and Environment, 122: 357-365. https://doi.org/10.1016/j.agee.2007.02.006
  72. Segers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41: 23-51. https://doi.org/10.1023/a:1005929032764
  73. Shein E.V. 2005. Soil Physics Course. Publishing house of Moscow State University, Moscow, 432 pp. (In Russian). [Шеин Е.В. 2005. Курс физики почв. М.: Изд-во МГУ. 432 с.]
  74. Spahni R., Wania R., Neef L., van Weele M., Pison I., Bousquet P., Frankenberg C., Foster P.N., Joos F., Prentice I. C., van Velthoven P. 2011. Constraining global methane emissions and uptake by ecosystems. Biogeosciences, 8: 1643-1665. https://doi.org/10.5194/bg-8-1643-2011
  75. Striegl R.G. 1993. Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere, 26: 715-720.
  76. Suhoveeva O.E., Karelin D.V. 2022. Estimation of carbon fluxes in agrolandscapes of Central Chernozem zone by simulation modelling. Environmental Dynamics and Global Climate Change, 13(3): 156-170.
  77. Terent’eva I.E., Sabrekov A.F., Glagolev M.V., Lapshina E.D., Smolentsev B.A., Maksyutov Sh.Sh. 2017. A new map of wetlands in the southern taiga of the West Siberia for assessing the emission of methane and carbon dioxide. Water Resources, 44(2): 297-307. doi: 10.1134/S0097807817020154
  78. Tian H., Xu X., Liu M., Ren W., Zhang C., Chen G., Lu C. 2010. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979-2008: application of a global biogeochemistry model. Biogeosciences, 7(9): 2673-2694. https://doi.org/10.5194/bg-7-2673-2010
  79. Titlyanova A.A. 2011. The first school of mathematical biology in 1973. IFKhIBPP RAN, Pushchino. 32 pp. (In Russian). [Титлянова А.А. 2011. Первая школа по математической биологии в 1973 г. Пущино: ИФХиБПП РАН. 32 с.]
  80. Van Huissteden J., van den Bos R., Alvarez I.M. 2006. Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Netherlands Journal of Geosciences, 85(1), 3-18. https://doi.org/10.1017/S0016774600021399
  81. Walter B.P., Heimann M. 2000. A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochemical Cycles, 14(3): 745-765. https://doi.org/10.1029/1999GB001204
  82. Walter B.P., Heimann M., Shannon R.D., White J.R. 1996. A process-based model to derive methane emissions from natural wetlands. Geophysical Research Letters, 23(25): 3731-3734. https://doi.org/10.1029/96GL03577
  83. Watts J.D., Kimball J.S., Parmentier F.J.W., Sachs T., Rinne J., Zona D., Oechel W., Tagesson T., Jackowicz-Korczyński M., Aurela M. 2014. A satellite data driven biophysical modeling approach for estimating northern peatland and tundra CO2 and CH4 fluxes. Biogeosciences, 11: 1961-1980. https://doi.org/10.5194/bg-11-1961-2014
  84. Xu X., Elias D.A., Graham D.E., Phelps T.J., Carrol S.L., Wullschleger S.D., Thornton P.E. 2015. A microbial functional group based module for simulating methane production and consumption: application to an incubation permafrost soil. Journal of Geophysical Research: Biogeosciences, 120: 1315–1333. https://doi.org/10.1002/2015JG002935
  85. Xu X., Yuan F., Hanson P.J., Wullschleger S.D., Thornton P.E., Riley W.J., Song X., Graham D.E., Song C., Tian H. 2016. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 13: 3735–3755. https://doi.org/10.5194/bg-13-3735-2016.
  86. Yu L., Huang Y., Zhang W., Li T., Sun W. 2017. Methane uptake in global forest and grassland soils from 1981 to 2010. Science of the Total Environment, 607-608: 1163-1172. https://doi.org/10.1016/j.scitotenv.2017.07.082
  87. Zelenev V.V. 1996. Assessment of the Average Annual Methane Flux from the Soils of Russia. WP-96-51. International Institute for Applied Systems Analysis: Laxenburg, Austria.
  88. Zhang Y., Li C., Tretin C.C., Li H., Sun G. 2002. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16(4): 1061. https://doi.org/10.1029/2001GB001838
  89. Zhuang Q., Chen M., Xu K., Tang J., Saikawa E., Lu Y., Melillo J. M., Prinn R.G., McGuire A.D. 2013. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochemical Cycles, 27: 650-663. https://doi.org/10.1002/gbc.20057
  90. Zhuang Q., Melillo J.M., Kicklighter D.W., Prinn R.G., McGuire A.D., Steudler P.A., Felzer B.S., Hu S. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles, 18: GB3010. https://doi.org/10.1029/2004GB002239
  91. Zhu Q., Liu J., Peng C., Chen H., Fang X., Jiang H., Yang G., Zhu D., Wang W., Zhou X. 2014. Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geoscientific Model Development, 7: 981-999. https://doi.org/10.5194/gmd-7-981-2014
  92. Zobler L. 1986. A world soil file for global climate modeling. NASA TM-87802. National Aeronautics and Space Administration, Washington, D.C. Данные доступны по URL: http://data.giss.nasa.gov/landuse/soilunit.html (дата обращения: 19.05.2011).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Glagolev M.V., Terentieva I.E., Sabrekov A.F., Il’yasov D.V., Zamolodchikov D.G., Karelin D.V., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах