Varietal Differentiation of Spring Barley in Terms of Cadmium Resistance Based on Morphometric, Biochemical Parameters, and Productivity
- Authors: Dikarev A.V.1, Dikarev D.V.1, Krylenkin D.V.1
-
Affiliations:
- All-Russian Institiute of Radiology and Agroecology of National Research Centre “Kurchatov institute”
- Issue: No 10 (2024)
- Pages: 68-82
- Section: Experimental Articles. Ecotoxicology
- URL: https://edgccjournal.org/0002-1881/article/view/647227
- DOI: https://doi.org/10.31857/S0002188124100083
- EDN: https://elibrary.ru/ANODEN
- ID: 647227
Cite item
Abstract
In the vegetation experiment, with the introduction of Cd2+ into sod-podzolic soil at concentrations of 25 and 50 mg/kg, barley of 4 varieties was grown, which, according to the results of a laboratory experiment with seedlings, turned out to be contrasting in resistance to the action of Cd2+. The aim of the work is to find out whether these varieties retain their properties as resistant or sensitive to cadmium not only as a seedling model, but also during the entire plant ontogenesis. The appearance of plants, plant height, biomass, leaf area, enzyme activity associated with plant protection from environmental stress factors, phytohormone content in aboveground biomass, grain weight, straw and 1000 grains, cadmium accumulation in aboveground plant biomass (straw and grain) were evaluated. Significant differences between groups of cadmium-resistant and cadmium-sensitive varieties were revealed in the experimental conditions. In terms of morphometric parameters and productivity when grown on cadmium-contaminated soil, resistant varieties significantly outperformed sensitive ones. These effects were most noticeable at a cadmium dose of 50 mg/kg, and a dose of 25 mg/kg was insufficient for confident differentiation of varieties into sensitive and resistant ones. It was noted that on the 50th day of the experiment, the concentration of stress hormones increased, and growth hormones decreased when 50 mg/kg cadmium was introduced into the soil of. At the same time, the concentration of stress hormones in resistant varieties increased already on the 30th day, and in growth varieties – both on the 30th and on the 50th day, it did not decrease as much as in sensitive ones. There was a high activity of antioxidant enzymes in resistant varieties compared with sensitive ones. Resistant varieties showed generally high productivity when a cadmium dose of 50 mg/kg was applied to the soil. Sensitive varieties accumulated cadmium in aboveground biomass in greater quantities than resistant ones, while the differences became clear when a dose of cadmium of 50 mg/kg was applied. The results of the study confirmed that the differentiation of barley varieties in terms of resistance found during the assessment of the effects of cadmium on seedlings persists throughout the entire plant life cycle and affects yield and other economically valuable characteristics. The data obtained are useful for assessing the consequences of anthropogenic pollution of agrocenoses, the tasks of breeding varieties of main crops with high resistance to cadmium. In addition, the research materials can be used in the development of a methodology for assessing the state of soils contaminated with heavy metals and for environmental rationing tasks.
Full Text

About the authors
A. V. Dikarev
All-Russian Institiute of Radiology and Agroecology of National Research Centre “Kurchatov institute”
Author for correspondence.
Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway, 1, corp. 1, Kaluga region, Obninsk 249035
D. V. Dikarev
All-Russian Institiute of Radiology and Agroecology of National Research Centre “Kurchatov institute”
Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway, 1, corp. 1, Kaluga region, Obninsk 249035
D. V. Krylenkin
All-Russian Institiute of Radiology and Agroecology of National Research Centre “Kurchatov institute”
Email: ar.djuna@yandex.ru
Russian Federation, Kiev highway, 1, corp. 1, Kaluga region, Obninsk 249035
References
- Алексахин Р.М., Фесенко С.В., Гераськин С.А. Методика оценки экологических последствий техногенного загрязнения агроэкосистем. М.: Изд-во МГУ, 2004. 206 с.
- Clemens S. Molecular mechanisms of plants metal tolerance and homeostasis // Planta. 2001. V. 212. P. 475–486.
- Dandan L., Dongmei Z., Peng W., Nanyan W., Xiangdong Z. Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots // Ecotoxicol. Environ. Saf. 2011. V. 74. P. 874–881.
- Sgherri C., Quartacci M.F., Izzo R., Navari-Izzo F. Relation between lipoic acid cell redox status I wheat grown in excess copper // Plant Рhysiol. Biochem. 2002. V. 40. P. 591–597.
- Полесская О.Г. Растительная клетка и активные формы кислорода. М.: Университет, 2007. 139 с.
- Correa A.X. da R., Rorig L.R., Verdinelli M.A., Cotelle S., Ferrad J.F., Radecki C.M. Cadmium phytotoxicity: quantities sensitivity relationships between classical endpoints and antioxidative enzyme biomarkers // Sci. Total Environ. 2006. V. 357. P. 120–127.
- Leon A.M., Palma J.M., Corpas F.J., Gomez M., Romero-Puertas M.C., Chaterjee D., Mateos R.M., del Rio L.A., Sandalio L.M. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium // Plant Physiol. Biochem. 2002. V. 40. P. 813–820.
- Liu X., Zhang S., Shan X.Q., Christie P. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antoxidative enzymes response to cadmium and arsenate co-contamination // Ecotoxicol. Environ. Saf. 2007. V. 68. P. 305–313.
- Drazkiewicz M., Skorzynska-Polit E., Krupa Z. The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium and copper stress // Chemosphere. 2007. V. 67. P. 188–193.
- Baker A.J.M. Metal tolerance // New Phytol. 1987. V. 106. P. 93–111.
- Гераськин С.А., Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Анализ внутривидового полиморфизма ячменя по устойчивости к действию кадмия // Агрохимия. 2021. № 8. С. 49–56.
- Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Влияние нитрата свинца на морфологические и цитогенетические показатели растений ярового двурядного ячменя (Hordeum vulgare L.) // Агрохимия. 2014. № 7. C. 45–52.
- Дикарев А.В., Дикарев В.Г., Дикарева Н.С., Гераськин С.А. Внутривидовой полиморфизм ярового ячменя (Hordeum vulgare L.) по устойчивости к действию свинца // Сел.-хоз. биол. 2014. № 5. С. 78–87.
- Журбицкий З.И. Теория и практика вегетационного метода. М.: Наука, 1968. 260 с.
- Агрохимические методы исследования почв. М.: Наука, 1975. 656 с.
- Дикарев В.Г., Гераськин С.А., Дикарев А.В., Дикарева Н.С. Сравнительный анализ эффективности использования интеркалярных и апикальных меристем ячменя для биоиндикации генотоксического действия свинца // Экол. генетика. 2018. Т. 16. № 3. С. 37–46.
- Bates L.S., Waldern R.P., Teare I.D. Rapid determination of free proline for water-stress studies // Plant and Soil. 1973. V. 39. № 1. P. 205–207.
- Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation // Arch. Biochem. Biophys. 1968. V. 125. № 1. P. 189–198.
- Биссвангер Х. Практическая энзимология. М.: БИНОМ, Лаборатория знаний, 2013. 328 с.
- Разыграев А.В., Петросян М.А., Базиян Е.В., Полянских Л.С. Исследование активности каталазы в гетеротопиях в экспериментальной модели эндометриоза // Журн. акушер. и женск. болезней. 2019. Т. 68. № 6. С. 57–63.
- Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione perox-idase // J. Lab. Clin. Med. 1967. V. 70. № 1. P. 158–169.
- Шевякова Н.И. Роль γ-аминомасляной кислоты, пролина, цистеина в нейтрализации вредных воздействий на растительный организм // Физиология растений. 1983. Т. 30. № 4. С. 768–783.
- Бритиков Е.А. Биологическая роль пролина. М.: Колос, 1975. 124 с.
- Кузнецов В.В., Шевякова Н.И. Пролин при стрессе: Биологическая роль, метаболизм, регуляция // Физиология растений. 1999. Т. 46. № 2. С. 321–336.
- Дикарев А.В., Дикарев В.Г., Дикарева Н.С. Исследование фитотоксичности свинца для растений редиса и салата при выращивании на разных типах почв // Агрохимия. 2019. № 6. С. 72–80.
- Bücker-Neto L., Paiva A.L.S., Machado R.D., Arenhart R.A. Interactions between plant hormones and heavy metals responses // Genet. Mol. Biol. 2017. V. 40. P. 373–386.
- Sauer M., Robert S., Kleine-Vehn J. Auxin: simply complicated // J. Exp. Bot. 2013. V. 64. P. 2565–2577.
- Sakakibara H. Cytokinins: activity, biosynthesis, and translocation // Annu. Rev. Plant Biol. 2006. V. 57. P. 431–449.
- Лутова Л.А., Ежова Т.А., Додуева И.Е., Осипова М.А. Генетика развития растений. СПб.: Наука, 2010. 539 с.
- Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants // Crop. J. 2016. V. 4. P. 162–176.
- Vishwakarma K., Upadhyay N., Kumar N., Yadav G. Abscisic acid signaling and abiotic stress tolerance in plants: A Review on current knowledge and future prospects // Front. Plant Sci. 2007. V. 8. P. 161.
- Ding P., Ding Y. Stories of salicylic acid: a plant defense hormone // Trend. Plant Sci. 2020. V. 25. № 6. P. 549–565.
- Khan M.I.R., Fatma M., Per T.S., Anjum N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants // Front. Plan. Sci. 2015. V. 6. P. 462.
- La V.H., Lee B.-R., Zhang Q., Park S.-H. Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa L. // Hortic. Environ. Biotechnol. 2019. V. 60. P. 31–40.
Supplementary files
