Martensite phases in Cu–Zn metastable alloys with the shape memory effect

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The martensitic transformations in Cu–38Zn and Cu–39.5Zn (wt %) alloys with shape memory effect have been studied using a combination of transmission and scanning electron microscopy, optical metallography, and X-ray diffraction analysis. The cooling of the specimen to low temperatures in the transmission electron microscope column has revealed the features of martensite morphology and fine structure, as well as electron microdiffraction in the alloys. The structural types of martensite phases β2′(3R) and γ2′(2H) have been identified in Cu–38Zn alloys, as well as β2″(9R) and γ2′(2H) – in Cu–39.5Zn alloys. The proposed crystallographic models of martensitic rearrangement in alloys are based on an analysis of X-ray and electron diffraction, including diffuse electron scattering, as well as based on the packing defects of the internal substructure of martensite.

Full Text

Restricted Access

About the authors

N. N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

V. G. Pushin

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

A. E. Svirid

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

D. I. Davydov

Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: svirid@imp.uran.ru
Russian Federation, Ekaterinburg, 620108

References

  1. Perkins J. (Ed.) Shape Memory Effects in Alloys. Plenum. London: UK, 1975. 583 p.
  2. Варлимонт Х., Дилей Л. Мартенситные превращения в сплавах на основе меди, серебра и золота. Москва: Наука, 1980. 205 с.
  3. Ооцука К., Симидзу К., Судзуки Ю., Сэкигути Ю., Тадаки Ц., Хомма Т., Миядзаки С. Сплавы с эффектом памяти формы. М.: Металлургия, 1990. 224 с.
  4. Duering T.W., Melton K.L., Stockel D., Wayman C.M. (Eds.) Engineering Aspects of Shape Memory Alloys. London, UK: Butterworth-Heineman, 1990.
  5. Хачин В.Н., Пушин В.Г., Кондратьев В.В. Никелид титана: Структура и свойства. М.: Наука, 1992. 160 с.
  6. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  7. Sedlak P., Seiner H., Landa M., Novák V., Šittner P., Manosa L.I. Elastic Constants of bcc Austenite and 2H Orthorhombic Martensite in CuAlNi Shape Memory Alloy // Acta Mater. 2005. V. 53. P. 3643–3661.
  8. Dasgupta R. A look into Сu-based shape memory alloys: Present Scenario and future prospects // J. Mater. Res. 2014. V. 29. № 16. P. 1681–1698.
  9. Pushin V., Kuranova N., Marchenkova E., Pushin A. Design and Development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based Alloys with High and Low Temperature Shape Memory Effects // Materials. 2019. V. 12. P. 2616–2640.
  10. Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Свирид А.Э., Уксусников А.Н., Устюгов Ю.М., Гундеров Д.В. Влияние термомеханической обработки на структурно-фазовые превращения в сплаве Cu–14Al–3Ni с эффектом памяти формы, подвергнутом кручению под высоким давлением // ФММ. 2018. Т. 119. № 4. С. 393–401.
  11. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Белослудцева Е.С., Куранова Н.Н., Пушин А.В. Влияние температуры изотермической осадки на структуру и свойства сплава Cu–14 мас.%Al–4 мас.% Ni с эффектом памяти формы // ФММ. 2019. Т. 120. С. 1257–1263.
  12. Свирид А.Э., Пушин В.Г., Куранова Н.Н., Белослудцева Е.С., Пушин А.В., Лукьянов А.В. Эффект пластификации сплава Cu–14Al–4Ni с эффектом памяти формы при высокотемпературной изотермической осадке // Письма в ЖТФ. 2020. Т. 46. С. 19–22.
  13. Свирид А.Э., Лукьянов А.В., Пушин В.Г., Куранова Н.Н., Макаров В.В., Пушин А.В., Уксусников А.Н. Применение изотермической осадки для мегапластической деформации beta-сплавов Cu–Al–Ni // ЖТФ. 2020. Т. 90. С. 1088–1094.
  14. Hornbogen E. The effect of variables on martensitic transformation temperatures // Acta Met. 1985. V. 33. № 4. P. 595–601.
  15. Свирид А.Э., Куранова Н.Н., Пушин В.Г., Афанасьев С.В. Особенности структуры метастабильных сплавов на основе Cu–Zn с эффектом памяти формы // ФММ. 2024. Т. 125. № 7. С. 821–830.
  16. Волков А.Е., Иночкина И.В. Модель обратимой памяти формы мартенситного типа в материалах с термоупругим превращением // Вестник ТГУ. 1998. Т. 3. С. 231–233.
  17. Razumov I., Gornostyrev Yu. Role of magnetism in lattice instability and martensitic transformation of Heusler alloys // Metals. 2023. V. 13. P. 843.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of phase martensitic transformations in Cu–Zn alloys [2].

Download (16KB)
3. Fig. 2. X-ray diffraction patterns of Cu–38Zn (a) and Cu–39.5Zn (b) alloys and the corresponding bar diagrams of hkl reflections of the α(FCC) and β(BCC) phases.

Download (19KB)
4. Fig. 3. OM (a, b) and SEM (c, d) of Cu–38Zn (a, c) and Cu–39.5Zn (b, d) alloys in the quenched state.

Download (76KB)
5. Fig. 4. Light- (a, g, d) and dark-field (b) TEM images of γ′2(2H) martensite and the corresponding electron microdiffraction patterns with zone axes (ZA) in the indices of the austenitic β-matrix close to [311] (c) and [310] (e) in the Cu–38Zn alloy at RT.

Download (69KB)
6. Fig. 5. Bright-field TEM images (a, b, d) of twinned β′2(3R)-martensite and the corresponding microelectron diffraction patterns (c, d, f) with [110]* in the indices of 3R(fcc)-martensite in the Cu–38Zn alloy at RT. Arrows indicate the <111> directions perpendicular to the thin twins in 3R-martensite.

Download (65KB)
7. Fig. 6. Light- (a, g, e) and dark-field (e) TEM images and corresponding electron microdiffraction patterns with [111]* rc in the indices of the austenitic β2-matrix (b – [010]* rc of 9R-martensite, c – [010]* rc of 2H-martensite) of martensite in the Cu–39.5Zn alloy at –150°C.

Download (66KB)
8. Fig. 7. Schemes of the reorganization of the crystal lattice of the type B2→3R(ABC) (a), B2→9R(ABCBCACAB) (b) and B2→2H(AB) (c) of martensites in Cu–Zn alloys.

Download (64KB)