Magnetic state of vanadium in chalcogenide V7Se8

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structural and magnetic properties of V7Se8 chalcogenide were studied using X-ray diffractometry, magnetic susceptibility measurements and nuclear magnetic resonance (NMR) spectroscopy on 51V nuclei. The ordering of vacancies in vanadium cationic layers with the formation of a 4C-type superstructure was found. It is estimated that the effective magnetic moment of vanadium ions is µeff = 0.35 µB. A significant local charge and magnetic heterogeneity of the V7Se8 compound has been revealed. The hyperfine interaction constant in vanadium ions is estimated from the temperature dependences of the magnetic shift of the NMR 51V line and the susceptibility χ(T) in V7Se8. A joint analysis of the NMR line shift data and the spin-lattice relaxation rate of 51V showed that the 3d-electrons of vanadium are in a itinerant state. At the same time, with decreasing temperature in the V7Se8 system, antiferromagnetic correlations are induced between the magnetic moments of vanadium in adjacent layers.

Full Text

Restricted Access

About the authors

N. A. Utkin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

M. E. Kashnikova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

Yu. V. Piskunov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

A. G. Smolnikov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

V. V. Ogloblichev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

A. F. Sadykov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

A. P. Gerashchenko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

N. V. Selezneva

Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg

N. V. Baranov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University named after the First President of Russia B. N. Yeltsin

Email: piskunov@imp.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

References

  1. Wang H., Salveson I. A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1−xS (0 ≤ x ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures // Phase Transition. 2005. V. 78. P. 547–567.
  2. Powell A.V., Vaqueiro P., Knight K.S., Chapon L.C., Sanchez R.D. Structure and magnetism in synthetic pyrrhotite Fe7S8; a powder neutron diffraction study // Phys. Rev. B. 2004. V. 70. P. 014415.
  3. Kawaminami M., Okazaki A. Neutron diffraction study of Fe7Se8 // J. Phys. Soc. Japan. 1967. V. 22. Р. 925.
  4. Andresen A.F., Leciejewicz J. A neutron diffraction study of Fe7Se8 // J. Phys. 1964. V. 25. Р. 574–578.
  5. Kawaminami М., Okazaki А. Neutron diffraction study of Fe7Se8 II // J. Phys. Soc. Japan. 1970. V. 29. P. 649–655.
  6. Terzieff P. The paramagnetism of transition metal substituted Fe7Se8 // J. Phys. Chem. Solids. 1982. V. 43. P. 305–309.
  7. Piskunov Yu.V., Ogloblichev V.V., Sadykov A.F., Akramov D.F., Smol’nikov A.G., Gerashchenko A.P., Selezneva N.V., Baranov N.V. Magnetic State of Layered Cobalt Chalcogenides Co7Se8 and Co7Te8 // JETP Letters. 2023. V. 117. P. 54–60.
  8. Piskunov Yu.V., Ogloblichev V.V., Sadykov A.F., Akramov D.F., Smol’nikov A.G., Gerashchenko A.P., Selezneva N.V., Baranov N.V. Magnetic State of Cobalt in Layered Chalcogenide Fe4Co3Se8 // Phys. Met. Metal. 2024. V. 125. P. 12–19.
  9. Хоссени У.А.Л. Влияние замещения железа ванадием на структуру и свойства системы Fe7-yVySe8 /Магистерская диссертация. Екатеринбург, 2017. 76 с.
  10. Свидетельство о государственной регистрации программы для ЭВМ #2018663091. Simul 2018. А.П. Геращенко, С.В. Верховский, А.Ф. Садыков, А.Г. Смольников, Ю.В. Пискунов, К.Н. Михалев / Зарегистрировано в Реестре программ для ЭВМ 22.10.2018 г.
  11. Винтер Ж. Магнитный резонанс в металлах: Пер. с англ. Под ред. А.П. Степанова. М.: Мир, 1976. 288 с.
  12. Freeman A.J., Frankel R.R. Hyperfine Interactions. New York and London: Academic Press, 1967. 756 p.
  13. Мория Т. Спиновые флуктуации в магнетиках с коллективизированными электронами: Пер. с англ. Под ред. А.В. Ведяева. М.: Мир, 1988. 288 с.
  14. Carter G.C., Bennett L.H., Kahan D.J. Metallic shifts in NMR-review of theory and comprehensive critical data compilation of metallic materials. 1. Review chapters NMR tables, evaluated knight-shifts in metals together with other solid-state and nuclear properties // Progress Mater. Sci. 1977. V. 20. P. 1–378.
  15. Koh A.K., Miller D.J. Hyperfine coupling constants and atomic parameters for electron paramagnetic resonance data // Atomic data and nuclear data tables. 1985. V. 33. P. 235–253.
  16. Korringa J. Nuclear magnetic relaxation and resonnance line shift in metals // Physica. 1950. V. 16. P. 601–610.
  17. Obata Y. Nuclear Magnetic Relaxation in Transition Metals // J. Phys. Soc. Japan. 1963. V. 18. P. 1020–1024.
  18. Moriya T. Nuclear Magnetic Relaxation in Antiferromagnetics // Progress Theoret. Phys. 1956. V. 16. P. 23–44.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Unit cell of the 4C superstructure of the V7Se8 compound. The dotted lines show the basic unit cell.

Download (163KB)
3. Fig. 2. Diffractogram of the compound V7Se8 (space group F2/m). Symbols are observed intensities, solid line is calculation, at the bottom is the difference curve between the observed and calculated intensities. The dashes indicate the position of reflections in the structure described by the space group F2/m.

Download (42KB)
4. Fig. 3. Temperature dependence of magnetic susceptibility c(T) in V7Se8 measured in an external magnetic field H = 10 kOe. The inset shows the dependence χ(T) in the temperature range T = 75 – 350 K. The solid line is the result of approximating the experimental data with the expression χ(T) = C/(T – q) + χ0.

Download (35KB)
5. Fig. 4. Dependence of 1/(c–c0) on temperature. The solid line is a straight line approximation of the data. The inset shows the dependence of magnetic susceptibility on the inverse temperature 1/T.

Download (28KB)
6. Fig. 5. Field dependence of magnetization of the V7Se8 compound at a temperature of 2 K. The inset shows the Belov–Arrot plot. The solid line approximates the high-field linear part of the dependence.

Download (53KB)
7. Fig. 6. NMR spectrum of 51V nuclei in a polycrystalline sample of V7Se8 in a magnetic field of H0 = 92.8 kOe at a temperature of T = 293 K and the result of modeling the experimental spectrum with a set of three resonance lines 1–3.

Download (28KB)
8. Fig. 7. Temperature dependence of the magnetic shift of 51V nuclei Kiso in V7Se8; the inset shows the dependence Kiso(c) with temperature as a parameter, approximated by a straight line.

Download (15KB)
9. Fig. 8. Temperature dependence of the nuclear spin-lattice relaxation rate T1–1. The dashed line is a straight line approximation of the data at T ≥ 90 K.

Download (11KB)