2–5 G mobile communication electromagnetic field chronic animal exposure assessment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. The intensive implementation of modern wireless communications networks using multi-frequency modulated electromagnetic fields radiofrequency (EMF RF) has led to a significant change in the electromagnetic background, which requires scientific research to assess the human health risk.
The aim of the study. To study the features of the biological effects chronic exposure to multi-frequency EMF RF from mobile communication systems of GSM (2G), UMTS (3G), LTE (4G) and 5G NR IMT-2020 (5G) standards on some state of indices in animals.
Materials and methods. Male Wistar rats of 180–200 g weight were subjected to round-the-clock 4-month exposure: group 1 – EMF exposure according to 2–5G standards (1.8; 2.1; 2.6; 3.6; 28 ; 37 GHz) with a total power density (PD) of 500 μW/cm2, group 2 – EMF exposure according to 5G NR IMT-2020 standard (3.6; 28; 37 GHz) with a PD 250 μW/cm2 with sham-exposure (parallel control). After every exposure month 12 animals from each group were decapitated and peripheral blood was collected for evaluation of adrenocorticotropic hormone (ACTH), corticosterone, lipid peroxidation, catalase, and leukogram.
Results. Wave-like significant changes in ACTH and corticosterone blood concentrations were revealed in exposure periods, more pronounced in the 2–5G exposure group. In this group, by the end of the 3rd and 4th months, carbonyls, diene conjugates and ketodienes concentrations had significant decrease; in the 5G group, in the 1st–3rd months of exposure, only the concentration of carbonyls changed, and in the 1st and 4th months the concentration of catalase decreased, which indicates an imbalance of pro- and antioxidant systems. The identified significant formed elements of white blood, especially lymphocytes, neutrophils, and eosinophils, indicate to the instability of the immune status of exposure animals.
Limitations of the study are related to the number of experimental animals and exposure modes.
Conclusion. The data obtained indicate to the sensitivity of animals for multi-frequency EMF biological effects, more pronounced in the 2–5G exposure group, which differs from the 5G group in a larger set of frequencies used and 2 times higher level exposure. These research results indicate to adaptive-compensatory changes that with continued exposure can lead to failure the of adaptation.

About the authors

Sergey Yu. Perov

Izmerov Research Institute of Occupational Health

Email: perov@irioh.ru
DSc (Biology), Head of the Electromagnetic field laboratory, Izmerov Research Institute of Occupational Health, Moscow, 105275, Russian Federation

Larisa V. Pokhodzey

Izmerov Research Institute of Occupational Health

Email: Lapokhodzey@yandex.ru
DSc (Medicine), leading researcher of the Electromagnetic field laboratory Izmerov Research Institute of Occupational Health, Moscow, 105275, Russian Federation

Yuriy P. Paltsev

Izmerov Research Institute of Occupational Health

Email: paltsev@irioh.ru
DSc (Medicine), Professor, chief researcher of the Electromagnetic field laboratory Izmerov Research Institute of Occupational Health, Moscow, 105275, Russian Federation

Rano Z. Lifanova

Izmerov Research Institute of Occupational Health

Email: lifanova@irioh.ru
junior researcher of the Electromagnetic field laboratory, Izmerov Research Institute of Occupational Health, Moscow, 105275, Russian Federation

References

  1. Gajšek P. Public exposure to radio frequency electromagnetic fields. In: Markov M.S., ed. Mobile Communications and Public Health. Boca Raton, FL: CRC Press Taylor & Francis Group LLC; 2019: 47–63.
  2. Походзей Л.В., Пальцев Ю.П. Критический анализ отечественных и зарубежных гигиенических регламентов ЭМП, создаваемых современными системами беспроводной связи и коммуникаций. Медицина труда и промышленная экология. 2023; 63(6): 397–405. https://doi.org/10.31089/1026-9428-2023-63-6-397-405 https://elibrary.ru/vxfsxv
  3. Перов С.Ю., Белая О.В. Электромагнитная обстановка, создаваемая базовыми станциями сотовой связи в пилотной зоне 5G. Гигиена и санитария. 2023; 102(6): 538–43. https://doi.org/10.47470/0016-9900-2023-102-6-538-543 https://elibrary.ru/xutaxy
  4. GSMA report. The Mobile Economy 2024. Available at: https://www.gsma.com/solutions-and-impact/connectivity-for-good/mobile-economy/wp-content/uploads/2024/02/260224-The-Mobile-Economy-2024.pdf
  5. Taheri M., Roshanaei G., Ghaffari J., Rahimnejad S., Khosroshahi B.N., Aliabadi M., et al. The effect of Base Transceiver Station waves on some immunological and hematological factors in exposed persons. Hum. Antibodies. 2017; 25(1–2): 31–7. https://doi.org/10.3233/hab-160303
  6. Pall M.L. Wi-Fi is an important threat to human health. Environ. Res. 2018; 164: 405–16. https://doi.org/10.1016/j.envres.2018.01.035
  7. Vlasova I.I., Mikhalchik E.V., Gusev A.A., Balabushevich N.G., Gusev S.A., Kazarinov K.D. Extremely high-frequency electromagnetic radiation enhances neutrophil response to particulate agonists. Bioelectromagnetics. 2018; 39(2): 144–55. https://doi.org/10.1002/bem.22103
  8. Казаринов К.Д., Щелконогов В.А., Чеканов А.В. Изучение чувствительности клеток крови человека к микроволновому излучению. Журнал радиоэлектроники. 2019; (8): 8. https://doi.org/10.30898/1684-1719.2019.8.10 https://elibrary.ru/fhbyxm
  9. Israel M., Vangelova K., Tschobanoff P. Study of the secretion of melatonin and stress hormones in operators from broadcasting and TV stations exposed to radiofrequency (RF) electromagnetic radiation (EMR). In: Bioelectromagnetics: Current Concepts. NATO Security through Science. Series – B: Physics and Biophysics. Springer; 2006: 271–80. https://doi.org/10.1007/1-4020-4278-7_16
  10. Hinrikus H., Koppel T., Lass J., Orru H., Roosipuu P., Bachmann M. Possible health effects on the human brain by various generations of mobile telecommunication: a review based estimation of 5G impact. Int. J. Radiat. Biol. 2022; 98(7): 1210–21. https://doi.org/10.1080/09553002.2022.2026516
  11. Schuermann D., Mevissen M. Manmade electromagnetic fields and oxidative stress-biological effects and consequences for health. Int. J. Mol. Sci. 2021; 22(7): 3772. https://doi.org/10.3390/ijms22073772
  12. Кузьмина Л.П., Измерова Н.И., Хотулева А.Г., Цидильковская Э.С., Кислякова А.А., Мили Х. Влияние физических производственных факторов на иммунную систему. Медицина труда и промышленная экология. 2023; 63(11): 694–701. https://doi.org/10.31089/1026-9428-2023-63-11-694-701 https://elibrary.ru/hansax
  13. Bouji M., Lecomte A., Hode Y., de Seze R., Villégier A.S. Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats. Exp. Gerontol. 2012; 47(6): 444–51. https://doi.org/10.1016/j.exger.2012.03.015
  14. Karadede B., Akdag M.Z., Kanay Z., Bozbiyik A. The effect of 900 MHz radiofrequency (RF) radiation on some hormonal and biochemical parameters in rabbits. J. Int. Dental. Med. Res. 2009; 2(3): 110–5.
  15. Shahryar H.A., Lotfi A.R., Bahojb M., Karami A.R. Effects of electromagnetic Fields of cellular phone on cortisol and testosterone hormones rate in Syrian hamsters (Mesocricetus auratus). Int. J. Zool. Res. 2008; 4(4): 230–3. https://doi.org/10.3923/ijzr.2008.230.233
  16. Koyu A., Gökalp O., Özgüner F., Cesur G., Mollaoglu H., Özer M.K., et al. The effects of subchronic 1800 MHz electromagnetic field exposure on the levels of TSH, T3, T4, cortisol and testosterone hormones. Genel. Tıp. Dergisi. 2005; 15(3): 101–5. https://doi.org/10.1016/j.toxlet.2005.03.006
  17. Li M., Wang Y., Zhang Y., Zhou Z., Yu Z. Elevation of plasma corticosterone levels and hippocampal glucocorticoid receptor translocation in rats: a potential mechanism for cognition impairment following chronic low-power-density microwave exposure. J. Radiat. Res. 2008; 49(2): 163–70. https://doi.org/10.1269/jrr.07063
  18. Adebayo E.A., Adeeyo A.O., Ogundiran M.A., Olabisi O. Bio-physical effects of radiofrequency electromagnetic radiation (RF-EMR) on blood parameters, spermatozoa, liver, kidney and heart of albino rats. J. King Saud Univ. – Sci. 2019; 31(4): 813–21. https://doi.org/10.1016/j.jksus.2018.11.007
  19. Амиров Д.Р., Тамимдаров Б.Ф., Шагеева А.Р. Клиническая гематология животных. Казань; 2020. https://elibrary.ru/obqjqo
  20. Pompella A., Maellaro E., Casini A.F., Ferrali M., Ciccoli L., Comporti M. Measurement of lipid peroxidation in vivo: a comparison of different procedures. Lipids. 1987; 22(3): 206–11. https://doi.org/10.1007/BF02537304
  21. Королюк М.А., Иванова Л.И., Майорова И.Г., Токарев В.Е. Метод определения активности каталазы. Лабораторное дело. 1988; (1): 16–9. https://elibrary.ru/sicxej
  22. The R Project for Statistical Computing. Available at: https://R-project.org/
  23. Пряхин Е.А., Аклеев А.В. Электромагнитные поля и биологические системы: стресс и адаптация. Челябинск: Полиграф-Мастер; 2011. https://elibrary.ru/qktyob
  24. Pall M.L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 2013; 17(8): 958–65. https://doi.org/10.1111/jcmm.12088
  25. Yao C., Zhao L., Peng R. The biological effects of electromagnetic exposure on immune cells and potential mechanisms. Electromagn. Biol. Med. 2022; 41(1): 108–17. https://doi.org/10.1080/15368378.2021.2001651
  26. Перов С.Ю., Белая О.В., Кислякова А.А., Левченков Д.И. Состояние показателей прооксидантной и антиоксидантной систем крови крыс в процессе хронического облучения многочастотным электромагнитным полем от систем сотовой связи стандартов GSM, UMTS и LTE. Медицина труда и экология человека. 2023; (1): 139–50. https://doi.org/10.24412/2411-3794-2023-10111 https://elibrary.ru/rebovv
  27. Перов С.Ю., Коньшина Т.А., Кислякова А.А. Колебательный характер окислительных процессов в крови крыс при хроническом многочастотном электромагнитном облучении от систем сотовой связи стандартов GSM, UMTS и LTE. Радиация и риск (Бюллетень Национального радиационно-эпидемиологического регистра). 2023; 32(2): 88–95. https://doi.org/10.21870/0131-3878-2023-32-2-88-95 https://elibrary.ru/vklhod
  28. Megha K., Deshmukh P.S., Banerjee B.D., Tripathi A.K., Ahmed R., Abegaonkar M.P. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 2015; 51: 158–65. https://doi.org/10.1016/j.neuro.2015.10.009
  29. Gulati S., Kosik P., Durdik M., Skorvaga M., Jakl L., Markova E., et al. Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes. Environ. Pollut. 2020; 267: 115632. https://doi.org/10.1016/j.envpol.2020.115632
  30. Sharma S., Shukla S. Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J. Chem. Neuroanat. 2020; 106: 101784. https://doi.org/10.1016/j.jchemneu.2020.101784
  31. Asl J.F., Goudarzi M., Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol. Rep. 2020; 72(4): 857–66. https://doi.org/10.1007/s43440-020-00063-9
  32. Dasdag S., Akdag M.Z. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J. Chem. Neuroanat. 2016; 75(Pt. B): 85–93. https://doi.org/10.1016/j.jchemneu.2015.09.001
  33. Перов С.Ю., Орлова В.С., Лифанова Р.З., Кислякова А.А. Отдаленные эффекты хронического воздействия электромагнитных полей базовых станций систем сотовой связи на гемопоэз крыс. Радиационная биология. Радиоэкология. 2022; 62(1): 70–4. https://doi.org/10.31857/S086980312201012X https://elibrary.ru/oszuqx

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.