Phagocytosis of alveolar macrophages in experimental animals exposed to chrosotil– asbestos dust

封面

如何引用文章

全文:

详细

Introduction. The exposure to dust, including chrysotile asbestos, is known to lead to the mobilization of alveolar macrophages, accompanied by the activation of free radical oxidation and the release of mediators stimulating fibroblast proliferation and collagen synthesis.

Material and methods. Thirty outbred male rats were divided into two groups: 1 - control with a period of 4 months (n = 15), the 2-experienced group subjected to 4-month seed with chrysotile asbestos dust (n = 15). Under ether anesthesia, animals of the experimental group once were installed intratracheally in the respiratory tract using a syringe 1.0 ml of the sterile saline solution containing a suspension (50 mg) of chrysotile dust - asbestos. Then, the animals were killed, their bronchial washes, centrifuged, smears from the sediment, were subsequently visualized with a microscope. Fat metabolism was assessed by the content of phospholipids in the cell, according to G.A. Merkulov. Determination of hydroxyproline in the pulmonary homogenate. The statistical differences between the two groups were assessed with the Student’s t-test. Data were expressed as mean ± SE. Probability values of p <0.05 were considered significant.

Results. The chronic exposure to chrysotile asbestos dust with a period of 4 months was found to causes a decrease in the activity of phagocytic cells and an increase in the destructive forms of alveolar macrophages in bronchoalveolar washes, excessive accumulation of phospholipids and an increase in oxyproline. Pneumofibrosis develops due to the cytotoxic and membrane-damaging effect of chrysotile asbestos dust.

Conclusion. Thus, chrysotile asbestos dust from the Zhitikarinsky site, attributed to nanoparticles and multicomponent in chemical composition, has a cytotoxic effect, accompanied by activation of phagocytic pulmonary membrane and membrane-destructive changes in cells with accumulation of phospholipids.

作者简介

Sholpan Koygeldinova

Karaganda Medical University

编辑信件的主要联系方式.
Email: kshs@list.ru
ORCID iD: 0000-0002-9366-1136

MD, Ph.D., DSci., Acting professor in the Department of Internal Medicine propaedeutics, docent, Karaganda Medical University, Karaganda, 100008, Republic of Kazakhstan.

e-mail: kshs@list.ru

哈萨克斯坦

Serik Ibrayev

Karaganda Medical University

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0569-078X
哈萨克斯坦

Lyudmila Bazeluk

Karaganda Medical University

Email: noemail@neicon.ru
哈萨克斯坦

Aygul Kasymova

City Polyclinic No. 3

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4535-8861
哈萨克斯坦

Aisulu Talaspayeva

Karaganda Medical University

Email: noemail@neicon.ru
ORCID iD: 0000-0001-5531-6123
哈萨克斯坦

参考

  1. Carter J.M., Corson N., Driscoll K.E. et al. A comparative dose-related prostate of anti-inflammatory mediators and submersion inhalation of carbon black. J. Occup. Environ. Med. 2006; 48(12): 1265–78. https://doi.org/10.1097/01.jom.0000230489.06025.14
  2. Velichkovskiy B.T. Molecular and cellular mechanisms of protection of the respiratory system from adverse effects. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 2001; 90(5): 16–21. (in Russian)
  3. Erokhin V.V. Functional Morphology of the Lungs [Funktsional’naya morfologiya legkikh]. Moscow: Meditsina; 1987. (in Russian)
  4. Yasumitsu Nishimura, Megumi Maeda, Naoko Kumagai-Takei, Suni Lee, Hidenori Matsuzaki, Yasuhiko Wada, Tamako Nishiike-Wada, Hiroshi Iguchi, Takemi Otsuki. Altered functions of alveolar macrophages and NK cells involvedin asbestos-related diseases. Environ Health Prev Med. 2013; 18:198–204. https://dx.doi.org/10.1007/s12199-013-0333-y
  5. Kamp D.W., Liu G., Cheresh P., Kim S.J., Mueller A., ​​Lam A.P., et al. Asbestos-induced alveolar epithelial cell apoptosis. The role of endoplasmic reticulum stress response. Am. J. Respir. Cell. Mol. Biol. 2013; 49(6): 892–90. https://doi.org/10.1165/rcmb.2013-0053oc
  6. Bernstein D.M., Chevalier J., Smith P. Comparison of chrysolite: final results of the inhalation biopersistence and histopathology following short-term exposure. Inhal. Toxicol. 2005; 17(9): 427–49. https://doi.org/10.1080/08958370591002012
  7. Voronov I.E., Gur’ev S.A., Kogan F.M. Determination of chrysotile in the dust of asbestos enterprises and its hygienic value. Gigiena i Sanitaria (Hygiene and Sanitation, Russian journal). 1983; 72(4): 44–6. (in Russian)
  8. Kovalevskiy E.V., Kashanskiy S.V. Modern problems of occupational medicine and industrial ecology when using natural and artificial mineral fibers. In: Collection of Articles of the Republican Scientific and Practical Conference with International Participation «Problems of Occupational Medicine and Industrial Toxicology in Kazakhstan» [Sbornik statey respublikanskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Problemy meditsiny truda i promyshlennoy toksikologii v Kazakhstane»]. Karaganda; 2006: 166–8. (in Russian)
  9. Ibraev S.A., Otarov E.Zh., Zeynidenov A.K Some data on the physicochemical properties of the surface of chrysotile asbestos fiber. Vestnik Karagandinskogo universiteta. 2011; (2): 3–8. (in Russian)
  10. Izmerov N.F., Denisov E.I. An assessment of the occupational risk in the medical sphere: principles, methods and criteria. Meditsina truda i promyshlennaya ekologiya. 2004; (2): 17–20. (in Russian)
  11. Merkulov G.A. Color of sudan black – IV on phospholipids. Course of pathological and histological technique [Okraska sudanom chernym – IV na fosfolipidy. Kurs patologogistologicheskoy tekhniki]. Moscow; 1969. (in Russian)
  12. Borisova L.B., Mareeva L.B., Uzbekov V.A., Tekebaeva A.M. Method for determining oxyproline in the liver. Information sheet of KazgosCNTI PS-760331; 1998. (in Russian)
  13. Bazelyuk L.T. Cytochemical tests of the functional state of rat alveolar macrophages under the action of coal and quartz dust. Vestnik Akademii nauk Kazakhskoy SSR. 1987; (9): 68–70. (in Russian)
  14. Baymanova A.M. Pathogenetic Mechanisms of the Formation of Anthracosilicosis [Patogeneticheskie mekhanizmy formirovaniya antrakosilikoza]. Karaganda; 2000. (in Russian)
  15. Jiang L., Akatsuka S., Nagai H., Chew S.H., Ohara H., Okazaki Y., et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J. Pathol. 2012; 228(3): 366–77. https://doi.org/10.1002/path.4075
  16. Foresti E., Fornero E., Lesci I.G., Rinaudo C., Zuccheri T., Roveri N. Asbestos health hazard: A spectroscopic study of synthetic geoinspired Fe-doped chrysotile. J. Hazard. Mater. 2009; 167(1–3): 1070–9. https://doi.org/10.1016/j.jhazmat.2009.01.103
  17. Pascolo L., Gianoncelli A., Schneider G., Salome M., Schneider M., Calligaro C., et al. The interaction of asbestos and iron in lung tissue revealed by synchrotron-based scanning X-ray microscopy. Sci. Rep. 2013; 3: 1123. https://doi.org/10.1038/srep01123
  18. Bernstein D.M., Riego Sintes J.M., Ersboell B.K., Kunert J. Biopersistence of synthetic mineral fibers as a predictor of chronic inhalation toxicity in rats. Inhal. Toxicol. 2001; 13(10): 851–75. https://doi.org/10.1080/089583701752378133
  19. Kumar V., Abbas A.K., Aster J.C. Robbins Basic Pathology. Philadelphia: Elsevier Saunders; 2013.
  20. Nagai H., Okazaki Y., Chew S.H., Misawa N., Yamashita Y., Akatsuka S. et al. Diameter of multi-walled carbon nanotubes is a critical factor in mesothelial injury and subsequent carcinogenesis. Proc. Natl. Acad. Sci. 2011; 108(49): E1330–8. https://doi.org/10.1073/pnas.1110013108
  21. Dzhamanbalin K.K. Carbon Nanotubes of Chrysotile Asbestos. Educational-Methodical Manual [Uglerodnye nanotrubki khrizotil-asbesta. Uchebno-metodicheskoe posobie]. Kostanay; 2016. (in Russian)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Koygeldinova S.S., Ibrayev S.A., Bazeluk L.T., Kasymova A.K., Talaspayeva A.Y., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.