Синтез металлических катализаторов Ni–Cu/Al2O3 методом “горения растворов” с использованием сахарозы в качестве восстановителя

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приведены результаты исследования влияния различного содержания сахарозы на состав и текстурные характеристики получаемых катализаторов. Катализаторы Ni–Cu/Al2O3, применяемые для синтеза нановолкнистого углерода, были приготовлены методом “горения раствора” (solution combusion) с использованием сахарозы в качестве топлива. Тестирование образцов катализатора проводилось в кварцевом проточном реакторе при атмосферном давлении и температуре 550°C (реакционная среда — метан) в течение 6 ч. Изучено влияние содержания органического топлива на эффективность работы предшественника катализатора в процессе синтеза нановолокнистого углерода. Полученный катализатор представлял собой порошок с удельной поверхностью до 128 м2/г.

Полный текст

Доступ закрыт

Об авторах

П. Б. Курмашов

Новосибирский государственный технический университет

Автор, ответственный за переписку.
Email: golovaxin-valera@mail.ru
Россия, Новосибирск

Т. С. Гудыма

Новосибирский государственный технический университет

Email: gudymatan@mail.ru
Россия, Новосибирск

В. Головахин

Новосибирский государственный технический университет

Email: golovaxin-valera@mail.ru
Россия, Новосибирск

А. В. Ухина

ФГБУН Институт химии твердого тела и механохимии СО РАН

Email: auhina181@gmail.com
Россия, Новосибирск

Е. А. Максимовский

ФГБУН Институт неорганической химии СО РАН

Email: eugene@niic.nsc.ru
Россия, Новосибирск

А. В. Ищенко

ФГБУН Институт катализа им. Г.К. Борескова СО РАН

Email: arcady.ishchenko@gmail.com
Россия, Новосибирск

А. Г. Баннов

Новосибирский государственный технический университет

Email: bannov_a@mail.ru
Россия, Новосибирск

Список литературы

  1. Hadian M., Marrevee D.P.F., Buist K.A. et al. // Chem. Eng. Sci. 2022. V. 260. № 22. P. 117938. https://doi.org/10.1016/j.ces.2022.117938
  2. Xu M., Lopez-ruiz J.A., Kovarik L. et al. // Appl. Catal. A, Gen. 2021. V. 611. P. 117967. https://doi.org/10.1016/j.apcata.2020.117967
  3. Фурсиков П.В., Тарасов Б.П. // АЭЭ. 2004. № 10. С. 24.
  4. Лобяк Е.В. Структура и свойства углеродных и азотсодержащих углеродных нанотрубок, синтезированных каталитическим пиролизом с использованием полимолибдатов Co, Ni, Fe: Дис. … канд. хим. наук. Новосибирск.: ИНХ СО РАН, 2018. 138 с.
  5. Курмашов П.Б. Совершенствование процесса синтеза нановолокнистого углерода и водорода на катализаторах, приготовленных методом синтеза горением раствора: Дис. … канд. техн. наук. Томск: ТПУ, 2021. 170 с.
  6. Курмашов П.Б., Максименко В.В., Баннов А.Г., Кувшинов Г.Г. // ХТТ. 2013. Т. 14. № 10. С. 635.
  7. Almiron J., Alcazar H., Churata R. et al.// Mater. Res. Express. 2018. V. 5. P. 125010. https://doi.org/10.1088/2053-1591/aadeb2
  8. Гудыма Т.С., Крутский Ю.Л., Максимовский Е.А., и др. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2023. Т. 17. № 2. С. 35. https://doi.org/10.17073/1997-308X-2023-2-35-45 [Powder Metallurgy аnd Functional Coatings. 2023. V. 17, № 2. P. 35. https://doi.org/10.17073/1997-308X-2023-2-35-45]
  9. Хабиров Р.Р., Черкасова Н.Ю., Гудыма Т.С. и др. // Известия вузов. Порошковая металлургия и функциональные покрытия. 2024. T. 18. № 2. С. 23. https://doi.org/10.17073/1997-308X-2024-2-23-34 [Powder Metallurgy аnd Functional Coatings. 2024. V. 18. № 2. P. 23. https://doi.org/10.17073/1997-308X-2024-2-23-34]
  10. Дик Д.В., Гудыма Т.С., Филиппов А.А., Фомин В.М., Крутский Ю.Л. // Прикладная механика и техническая физика. 2024. Т. 65. № 2. С. 81. https://doi.org/10.15372/PMTF202315362
  11. Cuervo M.R., Asedegbega-Nieto E. et al.// J. Chromatogr. A. 2008. V. 1188. № 2. P. 264. https://doi.org/10.1016/j.chroma.2008.02.061
  12. Kovalenko G.A., Kuznetsova E.V., Mogilnykh Y.I. et al. // Carbon. 2001. V. 39. № 7. Р. 1033. https://doi.org/10.1016/S0008-6223(00)00216-5
  13. Kovalenko G.A., Perminova L.V., Rudina N.A. et al. // Journal Mol. Catal. B. Enzym. 2012. V. 76. P. 116. https://doi.org/10.1016/j.molcatb.2011.11.015
  14. Yu Y., Xue S., Zhao C., Barnych B., Sun G. // Appl. Surf. Sci. 2022. V. 582. P. 152392. https://doi.org/10.1016/j.apsusc.2021.152392
  15. Advances R.S.C., Zhao Y., Wang X. et al. // RSC Advances. 2012. V. 2. № 27. P. 10195. https://doi.org/10.1039/c2ra21338a
  16. Naghash A.R., Xu Z., Etsell T.H. // Chem. Mater. 2005. V. 17. P. 815. https://doi.org/10.1021/cm048476v
  17. Nimse P., Lokhande R.S., Jaybhaye S. // Int. J. Creat. Res. Thoughts. 2023. V. 11. № 4. P. 39. https://doi.org/10.1729/Journal.34166
  18. Solovev E.A., Kuvshinov D.G., Chukanov I.S., Ermakov D.Y., Kuvshinov G.G. // Theor. Found. Chem. Eng. 2008. V. 42. № 5. P. 611. https://doi.org/10.1134/S0040579508050230
  19. Reshetenko T.V., Avdeeva L.B., Ismagilov Z.R., Chuvilin A.L., Ushakov V.A. // Appl. Catal. A-Gen. 2003. V. 247. P. 51. https://doi.org/10.1016/s0926-860x(03)00080-2
  20. Ferk G., Stergar J., Drofenik M. et al.// Mat. Let. 2014. V. 124. P. 39. https://doi.org/10.1016/j.matlet.2014.03.030
  21. Gulyaeva Y., Bykova M.A., Bulavchenko O. et al.// Nanomaterials. 2021. V. 11. № 8. P. 2017. https://doi.org/10.3390/nano11082017
  22. Gronchi P., Kaddouri A., Centola P., Del Rosso R. // J. Solgel Sci. Technol. 2003. V. 26. № 1–3. P. 843. https://doi.org/10.1023/A:1020755801366
  23. Shen Y., Lua A. // RSC Advances. 2014. V. 4. № 79. P. 42159. https://doi.org/10.1039/c4ra04379k
  24. Chesnokov V.V., Chichkan A.S. // Int. J. Hydrogen Energy. 2009. V. 34. № 7. P. 2979. https://doi.org/10.1016/j.ijhydene.2009.01.074
  25. Афинеевский А.В. Прозоров Д.А., Осадчая Т.Ю., Никитин К.А. Способ механохимического синтеза никелевого катализатора гидрирования. А. с. 2722298 РФ // Б.И. 2020. № 16. С. 1.
  26. Kurmashov P.B., Ukhina A.V., Manakhov A. et al. // Appl. Sci. V. 13. № 6. P. 3962. https://doi.org/10.3390/app13063962
  27. Kumar A., Cross A., Manukyan K. et al.// Chem. Eng. J. 2015. V. 278. P. 46. https://doi.org/10.1016/J.CEJ.2015.01.012
  28. Yao D., Yang H., Chen H., Williams P.T. // Appl. Catal. B Environ. 2018. V. 239. P. 565. https://doi.org/10.1016/j.apcatb.2018.07.075
  29. Kruissink E.C., Reijen L.L., Ross J.R.H. // Van. Chem. Soc. 1981. V. 77. P. 649. https://doi.org/10.1039/F19817700649
  30. Prakash A.S., Khadar A.M.A., Patil K.C., Hegde M.S. // J. Mater. Synth. Process. 2002. V. 10. № 3. P. 135. https://doi.org/10.1023/A:1021986613158
  31. Курмашов П.Б., Баннов А.Г., Попов М.В., Казакова А.А., Ухина А.В., Кувшинов Г.Г. // ЖПХ. 2018. Т. 91. № 11. С. 1649. https://doi.org/10.1134/S0044461818110166 [Russian Journal of Applied Chemistry. 2018. V. 91, № 11, P. 1874. https://doi.org/10.1134/S1070427218110198]
  32. Mukasyan A., Epstein P., Dinka P. // J. Mater. Synth. Process. 2007. V. 31. P. 1789. https://doi.org/10.1016/J.PROCI.2006.07.052
  33. Курмашов П.Б., Попов М.В., Бресте А.Е, Ухина А.В., Баннов А.Г. // Доклады Российской академии наук. Химия, науки о материалах. 2023. T. 511. № 1. C. 68. https://doi.org/10.31857/S2686953522600660
  34. Zhuravlev V.D., Bamburov V.G., Beketov A.R., Perelyaeva L.A., Baklanova I.V. // Ceram. Int. 2013. V. 39. P. 1379. https://doi.org/10.1016/J.CERAMINT.2012.07.078
  35. Tahmasebi K., Paydar M.H. // Mater. Chem. Phys. 2008. V. 109. P. 156. https://doi.org/10.1016/J.MATCHEMPHYS.2007.11.009
  36. Fan Z., Weng W., Zhou J., Gu D., Xiao W. // J. Energy Chem. 2021. V. 58. P. 415. https://doi.org/10.1016/j.jechem.2020.10.049
  37. Wang I.W., Dagle R., Khan T. et al.// Catal. Sci. Technol. 2021. V. 11. № 14. P. 4911. https://doi.org/10.1039/D1CY00287B
  38. Smirnov A.A., Khromova S.A., Bulavchenko O.A. et al. // Kinet. Catal. 2014. V. 55. P. 72. https://doi.org/10.1134/S0023158414010145
  39. Седакова В.А., Громова Е.С. // Вестник фармации. 2011. № 4. C. 17.
  40. Menezes B.R.C., Ferreira F.V., Silva B.C. et al. // J. Mater. Sci. 2018. V. 53. P. 14311. https://doi.org/10.1007/s10853-018-2627-3
  41. Баннов А.Г. Синтез и модификация нановолокнистых углеродных материалов и графитоподобных материалов функционального назначения: Дис. …докт. хим. наук. М.: РХТУ, 2022. 378 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Принципиальная схема лабораторной установки.

3. Рис. 2. Дифрактограммы образцов синтезированного катализатора (CuKα, 1.54 Å).

Скачать (502KB)
4. Рис. 3. ИК-спектры образцов катализатора.

Скачать (517KB)
5. Рис. 4. Дифрактограммы образцов углерода (CuKα, 1.54 Å).

Скачать (480KB)
6. Рис. 5. Микроснимки синтезированного образца катализатора С5: (а), (б) СЭМ; (в), (г) ПЭМ.

7. Рис. 6. Типичные ПЭМ-снимки углеродного материала, полученного на Ni–Cu/Al2O3 катализаторе (1 атм, 550°С, CH4).

8. Рис. 7. Изменение концентрации водорода в продуктах разложения CH4.

Скачать (571KB)

© Российская академия наук, 2025