Numerical Simulation of Stationary Nucleation Taking into Account Thermal Effects in a Wide Range of Supersaturations
- Authors: Perevoshchikov E.E.1, Zhukhovitskii D.I.1
-
Affiliations:
- United Institute of High Temperatures RAS
- Issue: Vol 87, No 4 (2025)
- Pages: 387-397
- Section: Articles
- Submitted: 07.10.2025
- Published: 15.08.2025
- URL: https://edgccjournal.org/0023-2912/article/view/692340
- DOI: https://doi.org/10.7868/S3034543X25040105
- EDN: https://elibrary.ru/npydbp
- ID: 692340
Cite item
Abstract
The problem of stationary vapor–liquid nucleation with a constant number of particles interacting via the Lennard-Jones potential is solved by the molecular dynamics method for both isothermal and non-isothermal nucleation, over a wide range of vapor supersaturations. A special simulation approach is used, in which clusters that reach a certain size are removed from the system, and their particles are returned as monomers. The temperature distribution over cluster sizes is determined. It is found that the temperature, starting from the monomer level, decreases somewhat but as the cluster size approaches the critical value, returns to its initial level and then increases rapidly. This temperature distribution over cluster sizes governs the distribution of their number densities, controlling the vapor non-ideality and significantly affecting the nucleation rate. The critical importance of knowing the cluster temperature for analytical models is demonstrated, as it enables accurate determination of vapor supersaturation and the actual non-isothermal nucleation rate. The nucleation rates and critical cluster sizes obtained for the isothermal and non-isothermal cases show satisfactory agreement with a theoretical model predicting a decrease in the nucleation rate under non-isothermal conditions.
Keywords
About the authors
E. E. Perevoshchikov
United Institute of High Temperatures RASIzhorskaya St., 12, build. 2, Moscow, 125412 Russia
D. I. Zhukhovitskii
United Institute of High Temperatures RAS
Email: dmr@ihed.ras.ru
Izhorskaya St., 12, build. 2, Moscow, 125412 Russia
References
- Райзер Ю.П. О конденсации в облаке испаренного вещества, расширяющегося в пустоту // Журнал экспериментальной и теоретической физики. 1959. T. 37. № 6. C. 1741–1750.
- Abyzov A.S., Schmelzer Jürn W.P., Kovalchuk A.A., et al. Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution // J. Non-Cryst. Solids. 2009. V. 356. № 52–54. P. 2915–2922. https://doi.org/10.1016/j.jnoncrysol.2010.02.031
- Volmer M., Weber A. Keimbildung in übersättigten Gebilden // Zeitschrift für Physikalische Chemie. 1926. V. 119U. № 1. P. 277–301. https://doi.org/10.1515/zpch-1926-11927
- Becker R., Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen // Annalen Der Physik. 1935. V. 416. № 8. P. 719–752. https://doi.org/10.1002/andp.19354160806
- Зельдович Я.Б. К теории образования новой фазы. Кавитация // Журнал экспериментальной и теоретической физики. 1942. Т. 12. № 11–12. С. 525–38.
- Chesnokov E.N., Krasnoperov L.N. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation // J. Chem. Phys. 2007. V. 126. № 14. P. 144504. https://doi.org/10.1063/1.2672647
- Wilemski G. The Kelvin equation and self-consistent nucleation theory // J. Chem. Phys. 1995. V. 103. № 3. P. 1119–1126. https://doi.org/10.1063/1.469822
- Katz J.L., Blander M. Condensation and boiling: Corrections to homogeneous nucleation theory for nonideal gases // J. Colloid Interface Sci. 1973. V. 42. № 3. P. 496–502. https://doi.org/10.1016/0021-9797(73)90035-0
- Barschdorff D. Carrier gas effects on homogeneous nucleation of water vapor in a shock tube // Phys. Fluids. 1975. V. 18. № 5. P. 529–535. https://doi.org/10.1063/1.861185
- Wyslouzil B.E., Seinfeld J.H. Nonisothermal homogeneous nucleation // J. Chem. Phys. 1992. V. 97. № 4. P. 2661–2670. https://doi.org/10.1063/1.463055
- Barrett J.C. A Stochastic simulation of nonisothermal nucleation // J. Chem. Phys. 2008. V. 128. № 16. P. 164519. https://doi.org/10.1063/1.2913051
- Barrett J.C. Note: Cluster temperatures in non-isothermal nucleation // J. Chem. Phys. 2011. V. 135. № 9. P. 096101. https://doi.org/10.1063/1.3636080
- Barrett J.C., Clement C.F., Ford I.J. Energy fluctuations in homogeneous nucleation theory for aerosols // J. Phys. A: Math. Gen. 1993. V. 26. № 3. P. 529. https://doi.org/10.1088/0305-4470/26/3/016
- Zhukhovitskii D.I. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor // J. Chem. Phys. 2016. V. 144. № 18. P. 184701. https://doi.org/10.1063/1.4948436
- Zhukhovitskii D.I., Zhakhovsky V.V. Thermodynamics and the structure of clusters in the dense au vapor from molecular dynamics simulation // J. Chem. Phys. 2020. V. 152. № 22. P. 224705. https://doi.org/10.1063/5.0010156
- Gunton J.D. Homogeneous nucleation // J. Stat. Phys. 1999. V. 95. № 5. P. 903–923. https://doi.org/10.1023/A:1004598332758
- Feder J., Russell K.C., Lothe J., et al. Homogeneous nucleation and growth of droplets in vapours // Adv. Phys. 1966. V. 15. № 57. P. 111–178. https://doi.org/10.1080/00018736600101264
- Башкиров А.Г., Фисенко С.П. Вывод уравнений теории неизотермической нуклеации // ТМФ. 1981. Т. 48. С. 106–111.
- Скутова И.В., Фисенко С.П. Шабуня С.И. Математическое моделирование кинетики неизотермической нуклеации в парогазовых смесях // Химическая физика. 1990. Т. 9. № 3. С. 426–432.
- Zhukhovitskii D.I. Multiscale approach to the theory of nonisothermal homogeneous nucleation // J. Chem. Phys. 2024. V. 160. № 19. P. 194505. https://doi.org/10.1063/5.0198471
- Thompson A.P., Aktulga H.M., Berger R., et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Zhukhovitskii D.I. Molecular dynamics study of cluster evolution in supersaturated vapor // J. Chem. Phys. 1995. V. 103. № 21. P. 9401–9407. https://doi.org/10.1063/1.470000
- Дуников Д.О. Исследование влияния неоднородностей полевых переменных при фазовых превращениях на свойства межфазной границы раздела жидкость–газ: дис. канд. физ.-мат. наук: 01.04.14. – Институт высоких температур. Москва. 2004. 105 с.
- Napari I., Julin J., Vehkamäki H. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation // J. Chem. Phys. 2009. V. 131. № 24. P. 244511. https://doi.org/10.1063/1.3279127
- Halonen R., Zapadinsky E., Vehkamäki H. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation // J. Chem. Phys. 2018. V. 148. № 16. P. 164508. https://doi.org/10.1063/1.5023304
Supplementary files
