Numerical Simulation of Stationary Nucleation Taking into Account Thermal Effects in a Wide Range of Supersaturations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The problem of stationary vapor–liquid nucleation with a constant number of particles interacting via the Lennard-Jones potential is solved by the molecular dynamics method for both isothermal and non-isothermal nucleation, over a wide range of vapor supersaturations. A special simulation approach is used, in which clusters that reach a certain size are removed from the system, and their particles are returned as monomers. The temperature distribution over cluster sizes is determined. It is found that the temperature, starting from the monomer level, decreases somewhat but as the cluster size approaches the critical value, returns to its initial level and then increases rapidly. This temperature distribution over cluster sizes governs the distribution of their number densities, controlling the vapor non-ideality and significantly affecting the nucleation rate. The critical importance of knowing the cluster temperature for analytical models is demonstrated, as it enables accurate determination of vapor supersaturation and the actual non-isothermal nucleation rate. The nucleation rates and critical cluster sizes obtained for the isothermal and non-isothermal cases show satisfactory agreement with a theoretical model predicting a decrease in the nucleation rate under non-isothermal conditions.

Sobre autores

E. Perevoshchikov

United Institute of High Temperatures RAS

Izhorskaya St., 12, build. 2, Moscow, 125412 Russia

D. Zhukhovitskii

United Institute of High Temperatures RAS

Email: dmr@ihed.ras.ru
Izhorskaya St., 12, build. 2, Moscow, 125412 Russia

Bibliografia

  1. Райзер Ю.П. О конденсации в облаке испаренного вещества, расширяющегося в пустоту // Журнал экспериментальной и теоретической физики. 1959. T. 37. № 6. C. 1741–1750.
  2. Abyzov A.S., Schmelzer Jürn W.P., Kovalchuk A.A., et al. Evolution of cluster size-distributions in nucleation-growth and spinodal decomposition processes in a regular solution // J. Non-Cryst. Solids. 2009. V. 356. № 52–54. P. 2915–2922. https://doi.org/10.1016/j.jnoncrysol.2010.02.031
  3. Volmer M., Weber A. Keimbildung in übersättigten Gebilden // Zeitschrift für Physikalische Chemie. 1926. V. 119U. № 1. P. 277–301. https://doi.org/10.1515/zpch-1926-11927
  4. Becker R., Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen // Annalen Der Physik. 1935. V. 416. № 8. P. 719–752. https://doi.org/10.1002/andp.19354160806
  5. Зельдович Я.Б. К теории образования новой фазы. Кавитация // Журнал экспериментальной и теоретической физики. 1942. Т. 12. № 11–12. С. 525–38.
  6. Chesnokov E.N., Krasnoperov L.N. Complete thermodynamically consistent kinetic model of particle nucleation and growth: Numerical study of the applicability of the classical theory of homogeneous nucleation // J. Chem. Phys. 2007. V. 126. № 14. P. 144504. https://doi.org/10.1063/1.2672647
  7. Wilemski G. The Kelvin equation and self-consistent nucleation theory // J. Chem. Phys. 1995. V. 103. № 3. P. 1119–1126. https://doi.org/10.1063/1.469822
  8. Katz J.L., Blander M. Condensation and boiling: Corrections to homogeneous nucleation theory for nonideal gases // J. Colloid Interface Sci. 1973. V. 42. № 3. P. 496–502. https://doi.org/10.1016/0021-9797(73)90035-0
  9. Barschdorff D. Carrier gas effects on homogeneous nucleation of water vapor in a shock tube // Phys. Fluids. 1975. V. 18. № 5. P. 529–535. https://doi.org/10.1063/1.861185
  10. Wyslouzil B.E., Seinfeld J.H. Nonisothermal homogeneous nucleation // J. Chem. Phys. 1992. V. 97. № 4. P. 2661–2670. https://doi.org/10.1063/1.463055
  11. Barrett J.C. A Stochastic simulation of nonisothermal nucleation // J. Chem. Phys. 2008. V. 128. № 16. P. 164519. https://doi.org/10.1063/1.2913051
  12. Barrett J.C. Note: Cluster temperatures in non-isothermal nucleation // J. Chem. Phys. 2011. V. 135. № 9. P. 096101. https://doi.org/10.1063/1.3636080
  13. Barrett J.C., Clement C.F., Ford I.J. Energy fluctuations in homogeneous nucleation theory for aerosols // J. Phys. A: Math. Gen. 1993. V. 26. № 3. P. 529. https://doi.org/10.1088/0305-4470/26/3/016
  14. Zhukhovitskii D.I. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor // J. Chem. Phys. 2016. V. 144. № 18. P. 184701. https://doi.org/10.1063/1.4948436
  15. Zhukhovitskii D.I., Zhakhovsky V.V. Thermodynamics and the structure of clusters in the dense au vapor from molecular dynamics simulation // J. Chem. Phys. 2020. V. 152. № 22. P. 224705. https://doi.org/10.1063/5.0010156
  16. Gunton J.D. Homogeneous nucleation // J. Stat. Phys. 1999. V. 95. № 5. P. 903–923. https://doi.org/10.1023/A:1004598332758
  17. Feder J., Russell K.C., Lothe J., et al. Homogeneous nucleation and growth of droplets in vapours // Adv. Phys. 1966. V. 15. № 57. P. 111–178. https://doi.org/10.1080/00018736600101264
  18. Башкиров А.Г., Фисенко С.П. Вывод уравнений теории неизотермической нуклеации // ТМФ. 1981. Т. 48. С. 106–111.
  19. Скутова И.В., Фисенко С.П. Шабуня С.И. Математическое моделирование кинетики неизотермической нуклеации в парогазовых смесях // Химическая физика. 1990. Т. 9. № 3. С. 426–432.
  20. Zhukhovitskii D.I. Multiscale approach to the theory of nonisothermal homogeneous nucleation // J. Chem. Phys. 2024. V. 160. № 19. P. 194505. https://doi.org/10.1063/5.0198471
  21. Thompson A.P., Aktulga H.M., Berger R., et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. 2022. V. 271. P 108171. https://doi.org/10.1016/j.cpc.2021.108171
  22. Zhukhovitskii D.I. Molecular dynamics study of cluster evolution in supersaturated vapor // J. Chem. Phys. 1995. V. 103. № 21. P. 9401–9407. https://doi.org/10.1063/1.470000
  23. Дуников Д.О. Исследование влияния неоднородностей полевых переменных при фазовых превращениях на свойства межфазной границы раздела жидкость–газ: дис. канд. физ.-мат. наук: 01.04.14. – Институт высоких температур. Москва. 2004. 105 с.
  24. Napari I., Julin J., Vehkamäki H. Cluster sizes in direct and indirect molecular dynamics simulations of nucleation // J. Chem. Phys. 2009. V. 131. № 24. P. 244511. https://doi.org/10.1063/1.3279127
  25. Halonen R., Zapadinsky E., Vehkamäki H. Deviation from equilibrium conditions in molecular dynamic simulations of homogeneous nucleation // J. Chem. Phys. 2018. V. 148. № 16. P. 164508. https://doi.org/10.1063/1.5023304

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025