The role of the hydrate layer in nanobubble stability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The factors determining the stability of a nanobubble with a hydrate layer 1 nm thick and a permittivity of about 3 are considered. Two stability hypotheses are compared: electrostatic and mechanical (ice-effect or “electrofreezing”). In the first case, the Laplace pressure is compensated by the electrostatic pressure at its boundary, and in the second – by the effect of electrofreezing of its Δ-layer in a high electric field. It is shown that in salt-free water, a smaller nanobubble charge is required for the formation of an ice shell than with the Coulomb stabilization mechanism. In seawater, on the contrary, the Coulomb mechanism is more efficient, since icing is counteracted by ions of the dissolved salt. The sizes and charge of the nanobubble are determined for two stability mechanisms.

About the authors

Y. K. Levin

Institute of Applied Mechanics RAS (IAM RAS)

Email: iam-ras@mail.ru
Leningradsky Prospekt, 7, bld. 1, Moscow, 125040 Russia

References

  1. Tan B.H., An H., Ohl C.-D. How bulk nanobubbles might survive // Physical Review Letters. 2020. V. 124. P. 134503. https://doi.org/10.1103/PhysRevLett.124.134503
  2. Левин Ю.К. Стабильность объемных нанопузырей с гидратным слоем // Коллоид. Журн. 2025. Т. 87. № 1. С. 35–40. https://doi.org/10.31857/S0023291225010042
  3. Zhu W., et al. Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram // Nature Communications. 2019. V. 10. P. 1925. https://doi.org/10.1038/s41467-019-09950-z
  4. Meegoda J.N., Hewage S.A., Batagoda J.H. Application of the diffused double layer theory to nanobubbles // Langmuir. 2019. V. 35. № 37. P. 12100−12112. https://doi.org/10.1021/acs.langmuir.9b01443
  5. Kelsall G.H., Tang S., Yurdakult S., Smith A.L. Electrophoretic behaviour of bubbles in aqueous electrolytes // J. Chem. Soc., Faraday Trans. 1996. V. 92. № 20. P. 3887–3893. https://doi.org/10.1039/FT9969203887
  6. Chan D.Y.C., Mitchell D.J. The free energy of an electrical double layer // Journal of Colloid and Interface Science. 1983. V. 95. № 1. P. 193–197. https://doi.org/10.1016/0021-9797(83)90087-5
  7. Nirmalkar N., Pacek A.W., Barigou M. On the existence and stability of bulk nanobubbles // Langmuir. 2018. V. 34. № 37. P. 10964–10973. https://doi.org/10.1021/acs.langmuir.8b01163
  8. Бункин Н.Ф., Бункин Ф.В. Бабстонная структура воды и водных растворов электролитов // Успехи физических наук. 2016. Т. 186. № 9. C. 933–952. https://doi.org/10.3367/UFNr.2016.05.037796
  9. Hewage S.A., Kewalramani J., Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/j.colsurfa.2020.125669
  10. Lopez-Garsia J.J., Moya A.A., Horno J., Delgado A., Lez-Caballero F.G. A network model of the electrical double layer around a colloid particle // Journal of Colloid and Interface Science. 1996. V. 183. № 1. P. 124–130. https://doi.org/10.1006/jcis.1996.0525
  11. Jadhav A.J., Barigou M. On the clustering of bulk nanobubbles and their colloidal stability // Journal of Colloid and Interface Science. 2021. V. 601. P. 816–824. https://doi.org/10.1016/j.jcis.2021.05.154
  12. Zhang H., Guo Z., Zhang X. Surface enrichment of ions leads to the stability of bulk nano-bubbles // Soft Matter. 2020. V. 16. № 23. P. 5470–5477. https://doi.org/10.1039/D0SM00116C
  13. Calgaroto S., Willberg K.Q., Rubio J. On the nanobubbles interfacial properties and future applications in flotation // Minerals engineering. 2014. V. 60. P. 33–40. https://doi.org/10.1016/j.mineng.2014.02.002
  14. Левин Ю.К. Механизм стабильности нанопузырей в воде // Изв. Вузов. Физика. 2024. Т. 67. № 10. С. 58–61. https://doi.org/10.17223/00213411/67/10/7
  15. Левин Ю.К. Условия стабильности слоя Штерна объемных нанопузырей в воде // Изв. Вузов. Физика. 2022. Т. 65. № 12. С. 55–59. https://doi.org/10.17223/00213411/65/12/55
  16. Lee C.Y., McCammon J.A., Rossky P.J. The structure of liquid water at an extended hydro-phobic surface // J. Chem. Phys. 1984. V. 80. P. 4448–4455. https://doi.org/10.1063/1.447226
  17. Luzar A., Svetina S., Zeks B. The contribution of hydrogen bonds to the surface tension of water // Chem. Phys. Lett. 1983. V. 96. № 4. P. 485–490.
  18. Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water // Science. 2018. V. 360. № 6395. P. 1339–1342. https://doi.org/10.1126/science.aat4191
  19. Toney M.F., Howard J.N., Richer J., Gary L., Gordon J.G., Melroy O.R., Wiesler D.G., Yee D., Sorensen L.B. Voltage-dependent ordering of water molecules at an electrode-electrolyte interface // Nature. 1994. V. 368. P. 444–446. https://doi.org/10.1038/368444a0
  20. Velasco-Velez J.-J., Wu C.H., Pascal T.A., Wan L.F., Guo J.A., Prendergast D., Salmeron M. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy // Science. 2014. V. 346. № 6211. P. 831–834. https://doi.org/10.1126/science.1259437
  21. Hewage S.A., Kewalramani J., Meegoda J.N. Stability of nanobubbles in different salts solutions // Colloids and Surfaces, A: Physicochemical and Engineering Aspects. 2021. V. 609. P. 125669. https://doi.org/10.1016/J.COLSURFA.2020.125669
  22. Левин Ю.К. Характеристики двойного электрического слоя объемных нанопузырей в воде // Коллоид. Журн. 2023. Т. 85. № 3. С. 350–354. https://doi.org/10.31857/S0023291223600220
  23. Кошоридзе С.И. Влияние строения двойного электрического слоя на стабильность объемных нанопузырей // Инженерная физика. 2023. № 7. С. 22–25. https://doi.org/10.25791/infizik.7.2023.1342
  24. Левин Ю.К. Новая концепция стабильности нанопузырей в воде // Сб. трудов 13-й Всерос. конф. «Механика композиционных материалов и конструкций, сложных и гетерогенных сред». 2023. С. 208. гл. 1, М.: ИПРИМ РАН. https://doi.org/10.33113/conf.mkmk.ras.2023.28
  25. Levin Yu.K. Analysis of the structure of bulk nanobubbles in water // Nanoscience and Technology: An International Journal. 2025. V. 16. № 2. P. 29–35.
  26. Левин Ю.К. Механизмы стабильности объемных нанопузырей в воде // Механика композиционных материалов и конструкций, сложных и гетерогенных сред // Сб. трудов 14-й Всерос. науч. конф. с международным участием, Москва, 23–25 октября 2024 г., М.: ООО «Сам Полиграфист». 2024. С. 206–212.
  27. Peleg Y., Yoffe A., Ehre D., Lahav M., Lubomirsky I. The role of the electric field in electrofreezing // J. Phys. Chem. C. 2019. V. 123. № 50. P. 30443–30446. https://doi.org/10.1021/acs.jpcc.9b09399
  28. Zhao C., Lin Y., Wu X., Ma L., Chu F. Molecular insights into the role of static electric fields in seawater icing // Journal of Molecular Liquids. 2025. V. 418. P. 126744. https://doi.org/10.1016/j.molliq.2024.126744
  29. Sutmann G. Structure formation and dynamics of water in strong external electric fields // J. Electroanal. Chem. 1998. V. 450. № 2. P. 289–302. https://doi.org/10.1016/S0022-0728(97)00649-9
  30. Svishchev I.M., Kusalik P.G. Crystallization of liquid water in a molecular dynamics simulation // Phys. Rev. Lett. 1994. V. 73. P. 975–978. https://doi.org/10.1103/PhysRevLett.73.975
  31. Yan J.Y., Overduin S.D., Patey G.N. Understanding electrofreezing in water simulations // J. Chem. Phys. 2014. V. 141. № 7. P. 074501. https://doi.org/10.1063/1.4892586
  32. Cassone G., Martelli F. Electrofreezing of liquid water at ambient conditions // ArXiv Preprint arXiv:2308.04893. 2023. V. 1. https://doi.org/10.48550/arXiv.2308.04893
  33. Cassone G., Martelli F. Electrofreezing of liquid water at ambient conditions // Nature Communications. 2024. V. 15. P. 1856. https://doi.org/10.1038/s41467-024-46131-z
  34. Saitta A.M., et al. Ab initio molecular dynamics study of dissociation of water under an electric field // Phys. Rev. Lett. 2012. V. 108. P. 207801. https://doi.org/10.1103/PhysRevLett.108.207801
  35. Verma P.K., et al. The bend+libration combination band is an intrinsic, collective, and strongly solute-dependent reporter on the hydrogen bonding network of liquid water // J. Phys. Chem. B. 2018. V. 122. № 9. P. 2587–2599. https://doi.org/10.1021/acs.jpcb.7b09641
  36. Karimi М., Parsafar G., Samouei H. Polarizing perspectives: ion- and dipole-induced dipole interactions dictate bulk nanobubble stability // J. Phys. Chem. B. 2024. V. 128. № 9. P. 7263−7270. https://doi.org/10.1021/acs.jpcb.4c03973

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences