Electrophoresis of conducting and non-conducting microparticles in a polar electrolyte under a strong electric field
- Авторлар: Frants E.A.1, Krylov A.A.1,2, Demekhin E.A.1,2,3
-
Мекемелер:
- Financial University under the Government of the Russian Federation
- Kuban State University
- Institute of Mechanics of Lomonosov Moscow State University
- Шығарылым: Том 87, № 4 (2025)
- Беттер: 453-466
- Бөлім: Articles
- ##submission.dateSubmitted##: 07.10.2025
- ##submission.datePublished##: 15.08.2025
- URL: https://edgccjournal.org/0023-2912/article/view/692345
- DOI: https://doi.org/10.7868/S3034543X25040159
- EDN: https://elibrary.ru/nqcocy
- ID: 692345
Дәйексөз келтіру
Аннотация
This work focuses on the study of electrophoresis of conducting and non-conducting particles in a polar electrolyte solution under a strong electric field. Numerical modeling results are presented for both types of particles, including distributions of cation and anion concentrations, charge density, total ion concentration, and ion fluxes near the particle surface. It is shown that, for a dielectric surface with a sufficiently high surface charge, an extended space-charge region can form. The emergence of this region is driven by high surface conductivity in the electric double layer and by intense tangential ion fluxes. Qualitative differences in the mechanism of extended space charge formation are revealed when comparing ion-selective and dielectric particles. The findings enhance our understanding of nonlinear electrokinetic processes and can be useful in designing microfluidic systems and colloidal technologies.
Авторлар туралы
E. Frants
Financial University under the Government of the Russian Federation
Email: eafrants@fa.ru
Leninsky Ave., 49, bldg. 2, Moscow, 125167 Russia
A. Krylov
Financial University under the Government of the Russian Federation; Kuban State UniversityLeninsky Ave., 49, bldg. 2, Moscow, 125167 Russia; Stavropolskaya St., 149, Krasnodar, 350040 Russia
E. Demekhin
Financial University under the Government of the Russian Federation; Kuban State University; Institute of Mechanics of Lomonosov Moscow State UniversityLeninsky Ave., 49, bldg. 2, Moscow, 125167 Russia; Stavropolskaya St., 149, Krasnodar, 350040 Russia; Michurinsky Ave., 1, Moscow, 119192 Russia
Әдебиет тізімі
- Smoluchowski M. Contribution à la théorie de l’endosmose électrique et de quelques phénomènes corrélatifs // Bulletin de l’Académie des Sciences de Cracovie. 1903.
- Helmholtz H. Studien über electrische grenzschichten // Annalen der Physik und Chemie. 1879. V. 243. № 7. P. 337–382. https://doi.org/10.1002/andp.18792430702
- Wall S. The history of electrokinetic phenomena // Curr. Opin. Colloid Interface Sci. 2010. V. 15. P. 119–124. https://doi.org/10.1016/j.cocis.2009.12.005
- Henry D.C. The cataphoresis of suspended particles. Part I. The equation of cataphoresis // Proc. R. Soc. Lond. A. 1931. V. 133. P. 106–129. https://doi.org/10.1098/rspa.1931.0133
- Mooney M. Electrophoresis and the diffuse ionic layer // J. Phys. Chem. 1931. V. 35. № 1. P. 331–344. https://doi.org/10.1021/j150319a021
- Dukhin S.S. Electrophoresis at large Peclet numbers // Adv. Colloid Interface Sci. 1991. V. 36. P. 219–248. https://doi.org/10.1016/0001-8686(91)80034-h
- Mishchuk N.A., Dukhin S.S. Electrokinetic phenomena of the second kind // Interfacial Electrokinetics and Electrophoresis. 2002. № 10. P. 241–275.
- Mishchuk N.A., Dukhin S.S. Electrophoresis of solid particles at large Peclet numbers // Electrophoresis. 2002. V. 23. № 13. P. 2012. https://doi.org/10.1002/1522-2683(200207)23:13%3C2012::aid-elps2012%3E3.0.co;2-y
- Barany S. Electrophoresis in strong electric fields // Adv. Colloid Interface Sci. 2009. V. 147–148. P. 36–43. https://doi.org/10.1016/j.cis.2008.10.006
- Baran A.A., Babich Y.A., Tarovsky A. A., Mischuk N.A. Superfast electrophoresis of ion-exchanger particles // Colloids and Surfaces. 1992. V. 68. № 3. P. 141–151. https://doi.org/10.1016/0166-6622(92)80198-b
- Gamayunov N.I., Murtsovkin V.A., Dukhin A.S. Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles // Colloid J. USSR (Engl. Transl.). 1986. V. 48. № 2. P. 197–203.
- Murtsovkin V., Mantrov G. Steady flows in the neighborhood of a drop of mercury with the application of a variable external electric field // Colloid J. 1991. V. 53. P. 240–244.
- Gamayunov N.I., Mantrov G.I., Murtsovkin V.A. Study of flows induced in the vicinity of conducting particles by an external electric field // Colloid J. USSR (Engl. Transl.). 1992. V. 54. P. 20–23.
- Murtsovkin V.A. Nonlinear flows near polarized disperse particles // Colloid J. 1996. V. 58. P. 341–349.
- Barinova N.O., Mishchuk N.A., Nesmeyanova T.A. Electroosmosis at spherical and cylindrical metal surfaces // Colloid J. 2008. V. 70. № 6. P. 695–702. https://doi.org/10.1134/s1061933x08060033
- Baygents J.C., Baldessari F. Electrohydrodynamic instability in a thin fluid layer with an electrical conductivity gradient // Phys. Fluids. 1998. V. 10. № 1. P. 301–311. https://doi.org/10.1063/1.869567
- Lin H., Storey B.D., Oddy M.H., Chen C.-H., Santiago J.G. Instability of electrokinetic microchannel flows with conductivity gradients // Phys. Fluids. 2004. V. 16. № 6. P. 1922–1935. https://doi.org/10.1063/1.1710898
- Chen C.-H., Lin H., Lele S., Santiago J. Convective and absolute electrokinetic instability with conductivity gradients // J. Fluid Mech. 2005. V. 524. P. 263–303. https://doi.org/10.1017/s0022112004002381
- Frants E., Amiroudine S., Demekhin E. DNS of nonlinear electrophoresis // Microgravity Sci. Technol. 2024. V. 36. P. 21. https://doi.org/10.1007/s12217-024-10108-w
- Squires T., Bazant M.Z. Induced-charge electro-osmosis // J. Fluid Mech. 2004. V. 509. P. 217–252. https://doi.org/10.1017/S0022112004009309
- Rubinstein I., Zaltzman B. Electro-osmotically induced convection at a permselective membrane // Physical Review E. 2000. V. 62. № 2. P. 2238–2251. https://doi.org/10.1103/PhysRevE.62.2238
- Frants E.A., Ganchenko G.S., Shelistov V.S., Amiroudine S., Demekhin E.A. Nonequilibrium electrophoresis of an ion-selective microgranule for weak and moderate external electric fields // Phys. Fluids. 2018. V. 30. № 2. P. 022001. https://doi.org/10.1063/1.5010084
- Ganchenko G.S., Frants E.A., Shelistov V.S., Nikitin N.V., Amiroudine S., Demekhin E.A. Extreme nonequilibrium electrophoresis of an ion-selective microgranule // Phys. Rev. Fluids. 2019. V. 4. P. 043703. https://doi.org/10.1103/PhysRevFluids.4.043703
- Mishchuk N.A., Barinova N.O. Theoretical and experimental study of nonlinear electrophoresis // Colloid J. 2011. V. 73. № 1. P. 88–96. https://doi.org/10.1134/S1061933X11010133
- Ganchenko G.S., Frants E.A., Amiroudine S., Demekhin E.A. Instabilities, bifurcations, and transition to chaos in electrophoresis of charge-selective microparticle // Phys. Fluids. 2020. V. 32. № 5. P. 054103. https://doi.org/10.1063/1.5143312
Қосымша файлдар
