Mechanisms of survival of lactic acid bacteria in silanol-humate gels with organic acids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacterial survival under unfavorable growth conditions is one of the fundamental problems of microbiology. The applied aspect of this problem – long-term preservation of bacterial cell viability – is of particular importance for storage of lactic acid bacteria due to the biotechnological significance of this group of microorganisms and their high rates of death during long-term storage. The aim of this study was to investigate the long-term survival of lactic acid bacteria of different physiological groups (heterofermentative Enterococcus faecium M3185 and homofermentative Lactobacillus paracasei AK 508) in silanol-humate gels (SHG) containing various organic acids used as titrants in obtaining SHG (malic, lactic, acetic, ascorbic, citric). Placing cells in CHG with organic acids resulted in a significant increase in the titer of viable cells relative to the control during long-term storage (up to 200 times) and depended on the bacterial culture, the acid used and the storage period (up to 5 months). The experimentally proven reasons for the long-term survival of bacteria in CHG are: 1) most of the cells are in a state of hypometabolism and consume organic acids, which is evidenced by a decrease in their concentration during storage, as well as by the release of CO2 in the case of E. faecium (in this case, the metabolic rate is 1000 times lower than that of growing cells); 2) the absence of mass autolysis of cells, which is presumably due to the “disunity” of the cells in the gel and the impossibility of creating sufficient concentrations of autoregulators and autolysis enzymes; 3) some of the cells are in a state of rest, in the form of stress-resistant cyst-like cells. There is also reason to believe that when transferred to a gel, an alternative (biofilm) phenotype is formed, which has increased stress resistance. The results obtained indicate the feasibility of immobilizing lactic acid bacteria cells in SGG with organic acids for long-term storage.

Full Text

Restricted Access

About the authors

O. A. Galuza

S. N. Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences; OOO “Bavar+”

Author for correspondence.
Email: olesya_galuza@mail.ru
Russian Federation, Moscow, 119071; Moscow, 127206

G. I. El-Registan

S. N. Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: olesya_galuza@mail.ru
Russian Federation, Moscow, 119071

A. V. Vishnyakova

S. N. Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: olesya_galuza@mail.ru
Russian Federation, Moscow, 119071

Yu. A. Nikolaev

S. N. Winogradsky Institute of Microbiology, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: olesya_galuza@mail.ru
Russian Federation, Moscow, 119071

References

  1. Бухарин О. В., Гинцбург А. Л., Романова Ю. М., Эль-Регистан Г.И. Механизмы выживания бактерий. М.: Медицина, 2005. 367 с.
  2. Воликов А. Б. Синтез, свойства и применение силанольных производных гуминовых веществ для минимизации последствий загрязнения окружающей среды. Автореферат дис. … канд. хим. наук. 03.02.08. М.: МГУ имени М.В. Ломоносова, 2018. 157 с.
  3. Голод Н. А., Лойко Н. Г., Мулюкин А. Л., Нейматов А. Л., Воробьева Л. И., Сузина Н. Е., Шаненко Е. Ф., Гальченко В. Ф., Эль-Регистан Г.И. Адаптация молочнокислых бактерий к неблагоприятным для роста условиям // Микробиология. 2009. Т. 78. С. 317–327.
  4. Golod N. A., Loiko N. G., Mulyukin A. L., Gal’Chenko V.F., El-Registan G.I., Neiymatov A. L., Vorobjeva L. I., Suzina N. E., Shanenko E. F. Adaptation of lactic acid bacteria to unfavorable growth conditions // Microbiology (Moscow). 2009. V. 78. P. 280‒289.
  5. Иммобилизованные клетки: биокатализаторы и процессы. Под ред. Ефременко Е. Н. М.: РИОР, 2018. 499 с.
  6. Лойко Н. Г., Краснова М. А., Пичугина Т. В., Гриневич А. И., Ганина В. И., Козлова А. Н., Николаев Ю. А., Гальченко В. Ф., Эль-Регистан Г.И. Изменение диссоциативного спектра популяций молочнокислых бактерий при воздействии антибиотиков // Микробиология. 2014. Т. 83. С. 284–294.
  7. Loiko N. G., Krasnova M. A., Pichugina T. V., Grinevich A. I., Ganina V. I., Kozlova A. N., Nikolaev Yu.A., Gal’chenko V.F., El’-Registan G.I. Changes in the phase variant spectra in the populations of lactic acid bacteria under antibiotic treatment // Microbiology (Moscow). 2014. V. 83. P. 195‒204.
  8. Мулюкин А. Л., Козлова А. Н., Капрельянц А. С., Эль-Регистан Г.И. Обнаружение и изучение динамики накопления ауторегуляторного фактора d1 в культуральной жидкости и клетках Micrococcus luteus // Микробиология. 1996а. Т. 65. № 1. С. 20–25.
  9. Mulyukin A. L., Kozlova A. N., Kaprel’yants A.S., El’-Registan G.I. The d1 autoregulatory factor in Micrococcus luteus cells and culture liquid: detection and accumulation dynamics // Microbiology (Moscow). 1996a. V. 65. P. 15‒20.
  10. Мулюкин А. Л., Луста К. А., Грязнова М. Н., Бабусенко Е. С., Козлова А. Н., Дужа М. В., Дуда В. И., Эль-Регистан Г.И. Образование покоящихся форм Bacillus cereus и Micrococcus luteus // Микробиология. 1996б. Т. 65. С. 782–789.
  11. Mulyukin A. L., Lusta K. A., Gryaznova M. N., Kozlova A. N., Duzha M. V., Duda V. I., El’-Registan G.I. Formation of resting cells by Bacillus cereus and Micrococcus luteus // Microbiology (Moscow). 1996b. V. 65. P. 683–689.
  12. Мулюкин А. Л., Сузина Н. Е., Мельников В. Г., Гальченко В. Ф., Эль-Регистан Г.И. Состояние покоя и фенотипическая вариабельность у Staphylococcus aureus и Corynebacterium pseudodiphtheriticum // Микробиология. 2014. Т. 83. С. 15–27.
  13. Mulyukin A. L., Suzina N. E., Mel’nikov V.G., Gal’chenko V.F., El’-Registan G.I. Dormant state and phenotypic variability of Staphylococcus aureus and Corynebacterium pseudodiphtheriticum // Microbiology (Moscow). 2014. V. 83. P. 149‒159.
  14. Мулюкин А. Л., Сузина Н. Е., Погорелова А. Ю., Антонюк Л. П., Дуда В. И., Эль-Регистан Г.И. Разнообразие морфотипов покоящихся клеток и условия их образования у Azospirillum brasilense // Микробиология. 2009. Т. 78. № 1. С. 42–52.
  15. Mulyukin A. L., Pogorelova A.Yu., El-Registan G.I., Suzina N. E., Duda V. I., Antonyuk L. P. Diverse morphological types of dormant cells and conditions for their formation in Azospirillum brasilense // Microbiology (Moscow). 2009. V. 78. P. 33‒41.
  16. Николаев Ю. А., Борзенков И. А., Демкина Е. В., Лойко Н. Г., Канапацкий Т. А., Перминова И. В., Хрептугова А. Н., Григорьева Н. В., Близнец И. В., Манучарова Н. А., Сорокин В. В., Коваленко М. А., Эль-Регистан Г.И. Новые биокомпозитные материалы, включающие углеводородокисляющие микроорганизмы, и их потенциал для деградации нефтепродуктов // Микробиология. 2021. Т. 90. № 6. С. 692‒705.
  17. Nikovaev Yu.A., Borzenkov I. A., Demkina E. V., Loiko N. G., Kanapatskii T. A., Perminova I. V., Khreptugova A. N., Grigor’eva N.V., Bliznets I. V., Manucharova N. A., Sorokin V. V., Kovalenko M. A., El’-Registan G.I. New biocomposite materials based on hydrocarbon-oxidizing microorganisms and their potential for oil products degradation // Microbiology (Moscow). 2021. V. 90. P. 731‒742.
  18. Практикум по микробиологии: Учеб. пособие для студ. высш. учеб. заведений / Под ред. Нетрусова А. И. М.: Издательский центр “Академия”, 2005. 608 с.
  19. Светличный В. А., Романова А. К., Эль-Регистан Г.И. Изучение количественного содержания мембраноактивных ауторегуляторов при литоавтотрофном росте Pseudomonas carboxydoflava // Микробиология. 1986. Т. 55. С. 55–59.
  20. Соляникова И. П., Сузина Н. Е., Егозарьян Н. С., Поливцева В. Н., Мулюкин А. Л., Егорова Д. О., Эль-Регистан Г.И., Головлева Л. А. Особенности структурно-функциональных перестроек клеток актинобактерий BN52 при переходе от вегетативного роста в состояние покоя и при прорастании покоящихся форм // Микробиология. 2017. Т. 86. № 4. С. 463–475.
  21. Solyanikova I. P., Suzina N. E., Egozarjan N. S., Polivtseva V. N., Golovleva L. A., Mulyukin A. L., El-Registan G.I., Egorova D. O. Structural and functional rearrangements in the cells of actinobacteria Microbacterium foliorum BN52 during transition from vegetative growth to a dormant state and during germination of dormant forms // Microbiology (Moscow). 2017. V. 86. P. 476‒486.
  22. Эль-Регистан Г.И., Дуда В. И., Светличный В. А., Козлова А. Н., Типисева И. В. Динамика ауторегуляторных факторов d в периодических культурах Pseudomonas carboxydoflava и Bacillus cereus // Микробиология. 1983. Т. 52. № 2. С. 238–243.
  23. Эль-Регистан Г.И., Земскова О. В., Галуза О. А., Уланова Р. В., Ильичева Е. А., Ганнесен А. В., Николаев Ю. А. Влияние гормонов и биогенных аминов на рост и выживание Enterococcus durans // Микробиология. 2023. Т. 92. № 4. С. 376–395.
  24. El’-Registan G.I., Zemskova O. V., Galuza O. A., Ulanova R. V., Il’icheva E.A., Gannesen A. V., Nikolaev Yu.A. Effect of hormones and biogenic amines on growth and survival of Enterococcus durans // Microbiology (Moscow). 2023. V. 92. P. 517‒533.
  25. Amrane A., Prigent Y. Influence of yeast extract concentrationon batch cultures of Lactobacillus helveticus: growth and production coupling // World J. Microbiol. Biotechnol. V. 14. P. 529–534.
  26. Aydın S. S., Denek N. Determination of lactic acid bacterial numbers of lyophilized or frozen natural lactic acid bacterial liquids prepared with different methods and stored for different times // Kocatepe Veter. J. 2024. V. 17. P. 29–41.
  27. Galuza O. A., Kovina N. E., Korotkov N. A., Nikolaev Y., El-Registan G. Long-term survival of bacteria in gels // Microbiology (Moscow). 2023. V. 92. Suppl. 1. P. S17–S21.
  28. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaïki L., Lamberret G., Sourice S., Duwat P., Gruss A. // Respiration capacity and consequences in Lactococcus lactis / Eds. Siezen R. J., Kok J., Abee T., Schasfsma G. Dordrecht: Springer, 2002. V. 82. P. 263–269.
  29. Green J., Paget M. S. Bacterial redox sensors // Nature Rev. Microbiol. 2004. V. 2. P. 954‒966.
  30. Herrgard M. J., Swainston N., Dobson P., Dunn W. B., Arga K. Y., Arvas M., Bluthgen N., Borger S., Costenoble R., Heinemann M., Hucka M., Le Novere N., Li P., Liebermeister W., Mo M. L., Oliveira A. P., Petranovic D., Pettifer S., Simeonidis E., Smallbone K., Spasic I., Weichart D., Brent R., Broomhead D. S., Westerhoff H. V., Kirdar B., Penttila M., Klipp E., Palsson B. O., Sauer U., Oliver S. G., Mendes P., Nielsen J., Kell D. B. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology // Nature Biotechnol. 2008. V. 26. P. 1155–1160.
  31. Kempes C. P., van Bodegom P. M., Wolpert D., Libby E., Amend J., Hoehler T. Drivers of bacterial maintenance and minimal energy requirements // Front. Microbiol. 2017. V. 8. Art. 31. P. 8–18.
  32. Khalisanni K. An overview of lactic acid bacteria // Int. J. Biosci. 2011. V. 1. № 3. P. 1‒13.
  33. Lamont J., Wilkins O., Bywater-Ekegärd M., Smith D. From yogurt to yield: potential applications of lactic acid bacteria in plant production // Soil Biol. Biochem. 2017. V. 111. P. 1‒9.
  34. Leblanc D. J. // Enterococcus / Eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. N.Y.: Springer, 2006. P. 175–204.
  35. Linko P., Stenroos S. L., Linko Y. Y., Koistinen T., Harju M., Heikonen M. Applications of immobilized lactic acid bacteria // Ann. NY Acad. Sci. 2006. V. 434. P. 406–417.
  36. Mehmeti I., Solheim M., Nes I. F., Holo H. Enterococcus faecalis grows on ascorbic acid // Appl. Environ. Microbiol. 2013. V. 79. P. 4756–4758.
  37. Mendes Ferreira A., Mendes-Faia A. The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking // Foods. 2020. V. 9. P. 1231–1250.
  38. Mitropoulou G., Nedovic V., Goyal A., Kourkoutas Y. Immobilization technologies in probiotic food production // J. Nutrit. Metab. 2013. № 5. P. 1–15. https://doi.org/10.1155/2013/716861
  39. Morgan C. A., Herman N., White P. A., Vesey G. Preservation of microorganisms by drying: a review // J. Microbiol. Meth. 2006. V. 66. P. 183–193.
  40. Ng E. W., Yeung M., Tong P. S. Effects of yogurt starter cultures on the survival of Lactobacillus acidophilus // Int. J. Food Microbiol. 2011. V. 145. P. 169–175.
  41. Nikolaev Y. A., Demkina E. V., Ilicheva E. A., Kanapatskiy T. A., Borzenkov I. A., Ivanova A. E., Tikhonova E. N., Sokolova D. S., Ruzhitsky A. O., El-Registan G.I. Ways of Long-term survival of hydrocarbon-oxidizing bacteria in a new biocomposite material ‒ silanol-humate gel // Microorganisms. 2023. V. 11. P. 1133–1152.
  42. Pang X., Zhang S., Lu J., Liu L., Ma C., Yang Y., Ti P., Gao W., Lv J. Identification and functional validation of autolysis-associated genes in Lactobacillus bulgaricus ATCC BAA-365 // Front. Microbiol. 2017. V. 8. Art. 1367. https://doi.org/10.3389/fmicb.2017.01367
  43. Pedersen M. B., Gaudu P., Lechardeur D., Petit M. A., Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology // Annu. Rev. Food Sci. Technol. 2012. V. 3. P. 37–58.
  44. Pious T., Aparna S., Reshmi U., Mubashar M., Sadiq P. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast CFU enumeration and single colony isolation from diverse samples // Biotechnol. Rep. 2015. V. 8. P. 45–55.
  45. Radler F., Briihl K. The metabolism of several carboxylic acids by lactic acid bacteria // Z Lebensm Unters Forsch. 1984. V. 179. P. 228‒231.
  46. Ramsey M., Hartke A., Huycke M. The physiology and metabolism of Enterococci // Enterococci: from commensals to leading causes of drug resistant infection / Eds. Gilmore M., Clewell D. B., Ike Y., Shankar N. / Boston: Massachusetts Eye and Ear Infirmary, 2014. P. 1–55.
  47. Ren K., Wang Q., Hu M., Chen Y., Xing R., You J., Xu M., Zhang X., Rao Z. Research progress on the effect of autolysis to Bacillus subtilis fermentation bioprocess // Fermentation. 2022. V. 8. P. 685–701.
  48. Russell J. B., Cook G. M. Energetics of bacterial growth: balance of anabolic and catabolic reactions // Microbiol. Rev. 1995. V. 59. P. 48–62.
  49. Salminen S., Wright V., Ouwehand A. Lactic acid bacteria: microbiological and functional aspects // Braz. J. Pharm. Sci. 2004. V. 42. P. 473–474.
  50. Shin H. J., Lee J., Pestka J., Ustinol Z. P. Viability of bifidobacteria in commercial dairy products during refrigerated storage // J. Food Protect. 2000. V. 63. P. 327–331.
  51. Volikov A., Ponomarenko S., Gutsche A., Nirschl H., Hatfield K., Perminova I. Targeted design of waterbased humic substances-silsesquioxane soft materials for nature-inspired remedial // RSC Adv. 2016. V. 6. P. 48222–48230.
  52. Zaunmüller T., Eichert M., Richter H., Unden G. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids // Appl. Microbiol. Biotechnol. 2006. V. 72. P. 421–429.
  53. Zotta T., Ianniello R. G., Guidone A., Parente E., Ricciardi A. Selection of mutants tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17 // J. Appl. Microbiol. 2014. V. 116. P. 632–643.
  54. Zur J., Wojcieszynska D., Guzik U. Metabolic responses of bacterial cells to immobilization // Molecules. 2016. V. 21. P. 958–973.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of changes in the number of viable cells of E. faecium (a) and L. paracasei (b) immobilized in SGH with different acids. The numbers indicate: 1 – control, non-stabilized culture stored in liquid LB medium; 2 – culture immobilized in SGH with citric acid; 3 – culture immobilized in SGH with malic acid; 4 – culture immobilized in SGH with lactic acid; 5 – culture immobilized in SGH with acetic acid; 6 – culture immobilized in SGH with ascorbic acid; 7 – culture immobilized in SGH with hydrochloric acid.

Download (157KB)
3. Fig. 2. Dynamics of CO2 accumulation by E. faecium cells with the addition of: a ‒ lactic acid; b ‒ ascorbic acid; c ‒ acetic acid. The numbers indicate: 1 – control, non-stabilized culture stored in liquid LB medium; 2 – culture immobilized in SHG with hydrochloric acid; 3 – non-stabilized culture stored in liquid LB medium with the addition of lactic acid; 4 – culture immobilized in SHG with lactic acid; 5 – non-stabilized culture stored in liquid LB medium with the addition of ascorbic acid; 6 – culture immobilized in SHG with ascorbic acid; 7 – non-stabilized culture stored in liquid LB medium with the addition of acetic acid; 8 – culture immobilized in SHG with acetic acid.

Download (166KB)
4. Fig. 3. Schematic diagram of the life cycle of E. faecium under different conditions in the presence of different food sources.

Download (587KB)
5. Fig. 4. Dynamics of pH changes during storage of E. faecium (a) and L. paracasei (b) cultures immobilized in SGS with different acids. The numbers indicate: 1 – control, non-stabilized culture stored in liquid LB medium; 2 – culture immobilized in SGS with lactic acid; 3 – culture immobilized in SGS with malic acid; 4 – culture immobilized in SGS with citric acid; 5 – culture immobilized in SGS with acetic acid; 6 – culture immobilized in SGS with ascorbic acid.

Download (146KB)
6. Fig. 5. The proportion (% of control) of viable cells of the E. faecium (a) and L. paracasei (b) populations in the control (without added acids) and experimental variants with the addition of organic acids – in the SHG (hatched columns) and the LB bacterial growth medium (solid filled columns), stored for 30 days. The numbers indicate: 1 – control; 2 – samples with the addition of ascorbic acid; 3 – samples with the addition of malic acid; 4 – samples with the addition of lactic acid; 5 – samples with the addition of citric acid; 6 – samples with the addition of acetic acid.

Download (149KB)
7. Fig. 6. Micrographs (transmission electron microscopy) of E. faecium cells: a – cells in the stationary growth phase in liquid LB medium; b – cells grown in LB medium after 30 days of storage in the same medium, general view; c – same as b, enlarged. Designations: VC – vegetative cells; LC – lysed cells; CLC – cyst-like resting cell; LF – L-form.

Download (191KB)
8. Fig. 7. Micrographs (transmission electron microscopy) of E. faecium cells stored for 1 month in SHG: a – with ascorbic acid, enlarged; b – with lactic acid; c – with acetic acid. Designations: VC – vegetative cell; CLC – cyst-like resting cell; K – capsule.

Download (243KB)
9. Fig. 8. Micrographs (transmission electron microscopy) of L. paracasei cells: a – cells in the stationary growth phase in liquid LB medium; b – cells grown in LB medium after 30 days of storage in the same medium, general view; c – the same as b, enlarged. Designations: SC – stationary cells; LC – lysed cells; CLC – cyst-like resting cell; LF – L-form.

Download (186KB)
10. Fig. 9. Micrographs (transmission electron microscopy) of L. paracasei cells stored for 1 month in SGG: a – with malic acid; b – with acetic acid. Designations: SC – stationary cell; CLC – cyst-like resting cell; K – capsule.

Download (186KB)

Copyright (c) 2025 Russian Academy of Sciences