New Bacteriophage Pseudomonas Phage Ka1 from a Trivia of Lake Baikal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The bacteriophage Pseudomonas phage Ka1 was isolated from the water of a tributary of Lake Baikal, in the area of discharge of treated wastewater in the city of Slyudyanka. The bacteriophage genome is 46,092 bp in size. and 50% composition of G + C pairs (AN OP455935.1) has 91% identity with the genome of Pseudomonas phage PSA37, belonging to the Bruynoghevirus from the class Caudoviricetes, which characterizes it as a new representative of Luz24-like phages (Bruynoghevirus). The bacteriophage lyses 62% of clinical isolates of Pseudomonas aeruginosa and is able to increase the effectiveness of gentamicin, ciprofloxacin, imipinem and meropenem by 4–8 times against this bacterium. Integrases, transposases and recombinases are not identified in the genome, which makes Pseudomonas phage Ka1 possible for use in complex therapy of infections caused by P. aeruginosa.

Full Text

Restricted Access

About the authors

M. S. Fedorova

Kazan (Volga Region) Federal University

Author for correspondence.
Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

A. E. Gatina

Kazan (Volga Region) Federal University

Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

V. N. Ilyina

Kazan (Volga Region) Federal University

Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

L. L. Yadykova

Kazan (Volga Region) Federal University

Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

V. V. Dryukker

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: MaSFedorova97@mail.ru
Russian Federation, 664033, Irkutsk

A. S. Gorshkova

Limnological Institute, Siberian Branch of the Russian Academy of Sciences

Email: MaSFedorova97@mail.ru
Russian Federation, 664033, Irkutsk

A. R. Kayumov

Kazan (Volga Region) Federal University

Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

E. Y. Trizna

Kazan (Volga Region) Federal University

Email: MaSFedorova97@mail.ru
Russian Federation, 420008, Kazan

References

  1. Ames B. N. The detection of chemical mutagens with enteric bacteria // Chemical mutagens: principles and methods for their detection. V. 1. Boston, MA: Springer US, 1971. P. 267–282.
  2. Andrews S., Krueger F., Segonds-Pichon A., Biggins L., Krueger C., Wingett S. FastQC: a quality control tool for high throughput sequence data. 2010.
  3. Aziz R., Bartels D., Best A., DeJongh M., Disz T., Edwards R., Formsma K., Gerdes S., Glass E., Kubal M., Meyer F., Olsen G., Olson R., Osterman A., Overbeek R., McNeil L., Paarmann D., Paczian T., Parrello B., Pusch1 G., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: rapid annotations using subsystems technology // BMC Genomics. 2008. V. 9. Art. 75. P. 1–15.
  4. Endersen L., Coffey A. The use of bacteriophages for food safety // Curr. Opin. Food Sci. 2020. V. 36. P. 1–8.
  5. Ferry T., Kolenda C., Laurent F., Leboucher G., Merabischvilli M., Djebara S., Gustave C.-A., Perpoint T., Barrey C., Pirnay J.-P., Resch G. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection // Nature Commun. 2022. V. 13. Art. 4239.
  6. Fister S., Mester P., Witte A. K., Sommer J., Schoder D., Rossmanith P. Part of the problem or the solution? Indiscriminate use of bacteriophages in the food industry can reduce their potential and impair growth-based detection methods // Trends Food Sci. Technol. 2019. V. 90. P. 170–174.
  7. Fong P., Boss D., Yap T., Tutt A., Wu P., Mergui-Roelvink M., Mortimer P., Swaisland H., Lau A., O’Connor M., Ashworth A., Carmichael J., Kaye S., Schellens J., de Bono J. Inhibition of poly (ADP-ribose) polymerase in tumors from BRCA mutation carriers // New England J. Med. 2009. V. 361. P. 123–134.
  8. Gratia A. Des relations numériques entre bactéries lysogènes et particules de bactériophages // Annales de l’Institut Pasteur. Masson Publishing, France, 1936. Т. 57.
  9. Guo Z., Lin H., Ji X., Yan G., Lei L., Han W., Gu J., Huang J. Therapeutic applications of lytic phages in human medicine // Microb. Pathogen. 2020. V. 142. Art. 104048.
  10. Kayumov A., Khakimullina E., Sharafutdinov I., Trizna E., Latypova L., Lien H., Margulis A., Bogachev M., Kurbangalieva A. Inhibition of biofilm formation in Bacillus subtilis by new halogenated furanones // J. Antibiot. 2015. V. 68. P. 297–301.
  11. Kortright K., Chan B., Koff J., Turner P. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria // Cell Host & Microbe. 2019. V. 25. P. 219–232.
  12. Leclercq R., Canton R., Brown D., Giske C., Heisig P., MacGowan A., Mouton J., Nordmann P., Rodloff A., Rossolini G., Soussy C.-J., Steinbakk M., Winstanley T., Kahlmeter G. EUCAST expert rules in antimicrobial susceptibility testing // Clin. Microbiol. Infect. 2013. V. 19. P. 141–160.
  13. Li L., Zhong Q., Zhao Y., Bao J., Liu B., Zhong Z., Wang J., Yang L., Zhang T., Cheng M., Wu N., Zhu T., Le S. First‐in‐human application of double‐stranded RNA bacteriophage in the treatment of pulmonary Pseudomonas aeruginosa infection // Microb. Biotechnol. 2023. V. 16. P. 862–867.
  14. Mazzocco A., Waddell T., Lingohr E., Johnson R. Enumeration of bacteriophages using the small drop plaque assay system // Bacteriophages: methods and protocols. V. 1: Isolation, characterization, and interactions. 2009. P. 81–85.
  15. Mielko K., Jabłoński S., Milczewska J., Sands D., Łukaszewicz M., Młynarz P. Metabolomic studies of Pseudomonas aeruginosa // World J. Microbiol. Biotechnol. 2019. V. 35. P. 1–11.
  16. La Rosa R., Rossi E., Feist A., Johansen H., Molin S. Compensatory evolution of Pseudomonas aeruginosa’s slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis // Nature Commun. 2021. V. 12. Art. 3186.
  17. Sambrook J., Fritsch E., Maniatis T. Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, 1989. 2nd edn.
  18. Seemann T. Prokka: rapid prokaryotic genome annotation // Bioinformatics. 2014. V. 30. P. 2068–2069.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure S1. Pie chart of coding sequences of the Pseudomonas genome

Download (496KB)
3. Supplement
Download (92KB)

Copyright (c) 2024 Russian Academy of Sciences