Search for Bacteriophages Specific against Members of the Genus Rhodococcus

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This is the first report on the isolation of Rhodococcus aetherivorans-specific bacteriophages and of applicability of such invertebrates as Hyalophora cecropia and Eisenia fetida as objects for screening the phage microflora of Rhodococcus species. Some of the isolated phages were capable of growth of R. ruber and R. qingshengii. An efficient procedure for bacteriophage reproduction in the liquid culture of R. aetherivorans was developed. The revealed bacteriophages may be used for development of efficient genetic tools for Rhodococcus strains, including the industrially significant ones.

全文:

受限制的访问

作者简介

A. Novikov

NRC “Kurchatov Institute”, Kurchatov Genomic Center

编辑信件的主要联系方式.
Email: alexm19@mail.ru
俄罗斯联邦, 123182

I. Tokmakova

NRC “Kurchatov Institute”, Kurchatov Genomic Center

Email: alexm19@mail.ru
俄罗斯联邦, 123182

A. Samarin

NRC “Kurchatov Institute”, Kurchatov Genomic Center

Email: alexm19@mail.ru
俄罗斯联邦, 123182

K. Lavrov

NRC “Kurchatov Institute”, Kurchatov Genomic Center

Email: alexm19@mail.ru
俄罗斯联邦, 123182

A. Yanenko

NRC “Kurchatov Institute”, Kurchatov Genomic Center

Email: alexm19@mail.ru
俄罗斯联邦, 123182

参考

  1. Бактериофаги. Биология и практическое применение / Под ред. Э. Каттер, А. М. Сулаквелидзе. М.: Научный мир, 2012. 640 с.
  2. Bubnov D. M., Yuzbashev T. V., Khozov A. A., Melkina O. E., Vybornaya T. V., Stan G. B., Sineoky S. P. Robust counterselection and advanced λRed recombineering enable markerless chromosomal integration of large heterologous constructs // Nucleic Acids Res. 2022. V. 50. P. 8947–8960. https://doi.org/10.1093/nar/gkac649
  3. Grechishnikova E. G., Shemyakina A. O., Novikov A. D., Lavrov K. V., Yanenko A. S. Rhodococcus: sequences of genetic parts, analysis of their functionality, and development prospects as a molecular biology platform // Crit. Rev. Biotechnol. 2023. V. 43. P. 835–850. https://doi.org/10.1080/07388551.2022.2091976
  4. Guzman J., Vilcinskas A. Draft genome sequence of Rhodococcus rhodochrous strain G38GP, isolated from the Madagascar hissing cockroach // Microbiol. Resour. Announc. 2021. V. 10. Art. e0077721. https://doi.org/10.1128/MRA.00777-21
  5. Kim D., Choi K. Y., Yoo M., Zylstra G. J., Kim E. Biotechnological potential of Rhodococcus biodegradative pathways // J. Microbiol. Biotechnol. 2018. V. 28. P. 1037–1051. https://doi.org/10.4014/jmb.1712.12017
  6. Larkin M. J., Kulakov L. A., Allen C. C. Biodegradation and Rhodococcus – masters of catabolic versatility // Curr. Opin. Biotechnol. 2005. V. 16. P. 282–290. https://doi.org/10.1016/j.copbio.2005.04.007
  7. Liang Y., Jiao S., Wang M., Yu H., Shen Z. A CRISPR/Cas9-based genome editing system for Rhodococcus ruber TH // Metab. Engin. 2020. V. 57. P. 13–22. https://doi.org/10.1016/j.ymben.2019.10.003
  8. Liang Y. X., Yu H. M. Genetic toolkits for engineering Rhodococcus species with versatile applications // Biotechnol. Adv. 2021. V. 49. Art. 107748. https://doi.org/10.1016/j.biotechadv.2021.107748
  9. Martinkova L., Uhnakova B., Patek M., Nesvera J., Kren V. Biodegradation potential of the genus Rhodococcus // Environ. Int. 2009. V. 35. P. 162–177. https://doi.org/10.1016/j.envint.2008.07.018
  10. Salcedo-Porras N., Umana-Diaz C., de Oliveira Barbosa Bitencourt R., Lowenberger C. The role of bacterial symbionts in triatomines: an evolutionary perspective // Microorganisms. 2020. V. 8. Art. 1438. https://doi.org/10.3390/microorganisms8091438
  11. Summer E. J., Liu M., Gill J. J., Grant M., Chan-Cortes T.N., Ferguson L., Janes C., Lange K., Bertoli M., Moore C., Orchard R. C., Cohen N. D., Young R. Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7 // Appl. Environ. Microbiol. 2011. V. 77. P. 669–683. https://doi.org/10.1128/AEM.01952-10
  12. Yassin A. F. Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug // Int. J. Syst. Evol. Microbiol. 2005. V. 55. P. 1575–1579. https://doi.org/10.1099/ijs.0.63571-0
  13. Патент СССР. 1990. № SU1731814.
  14. Патент США. 2014. № US20140187818A1.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024