Activity of East Siberian Trichoderma Isolates against Plant-pathogenic Microorganisms

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The genus Trichoderma comprised important antagonists of pathogenic fungi and can be used in agriculture to combat various plant diseases. In the course of the present work, two micromycete strains were isolated from wood cuts in Eastern Siberia, which were identified by morphological and molecular genetic characteristics as Trichoderma atroviride and Trichoderma harzianum. These Trichoderma strains efficiently inhibited the development of the pathogenic fungi studied (by up to 80%). The data presented in the paper indicate that Trichoderma atroviride and Trichoderma harzianum may be promising for further study of the means of biocontrol of plant diseases.

全文:

受限制的访问

作者简介

V. Kuznetsova

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: uchiha-viksya@mail.ru
俄罗斯联邦, Irkutsk, 664033

E. Matveeva

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: uchiha-viksya@mail.ru
俄罗斯联邦, Irkutsk, 664033

L. Belovezhets

Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences

Email: uchiha-viksya@mail.ru
俄罗斯联邦, Irkutsk, 664033

参考

  1. Всероссийская коллекция микроорганизмов. [Электронный ресурс] URL: http://www.vkm.ru/rus. (дата обращ. 25.04.2023).
  2. Научный центр “Курчатовский институт”. Научно-исследовательский институт генетики и селекции промышленных микроорганизмов. [Электронный ресурс] URL: https://vkpm.genetika.ru. (дата обращ. 25.04.2023).
  3. Arasu M.V., Vijayaraghavan P., Al-Dhabi N.A., Choi K.C., Moovendhan M. Biocontrol of Trichoderma gamsii induces soil suppressive and growth-promoting impacts and rot disease-protecting activities // J. Basic Microbiol. 2023. V. 63. Р. 801‒813.
  4. https://doi.org/10.1002/jobm.202300016
  5. Guzmán-Guzmán P., Kumar A., de los Santos-Villalobos S., Parra-Cota F.I., Orozco-Mosqueda Md.C., Fadiji A.E., Hyder S., Babalola O.O., Santoyo G. Trichoderma species: our best fungal allies in the biocontrol of plant diseases — a review // Plants. 2023. V. 12. Art. 432.
  6. https://doi.org/10.3390/plants12030432
  7. Haghi Z., Mostowfizadeh-Ghalamfarsa R., Steinberg C. The efficacy of Iranian Pythium oligandrum isolates in biocontrol of soil-borne fungal pathogens of tomato // J. Plant Pathol. 2023. V. 105. Р. 185‒196.
  8. https://doi.org/10.1007/s42161-022-01245-5
  9. Harman G.E., Doni F., Khadka R.B., Uphoff N. Endophytic strains of Trichoderma increase plants’ photosynthetic capability // J. Appl. Microbiol. 2019. V. 130. Р. 529‒546.
  10. https://doi.org/10.1111/jam.14368
  11. Illescas M., Morán-Diez M.E., Martínez de Alba Á.E., Hermosa R., Monte E. Effect of Trichoderma asperellum on wheat plants’ biochemical and molecular responses, and yield under different water stress conditions // Int. J. Mol. Sci. 2022. V. 23. Art. 6782.
  12. https://doi.org/10.3390/ijms23126782
  13. Jiang F., Peng Ye., Sun Q. Pesticides exposure induced obesity and its associated diseases: recent progress and challenges // J. Future Foods. 2022. V. 2. Р. 119‒124.
  14. https://doi.org/10.1016/j.jfutfo.2022.03.005
  15. Kekalo A.Yu., Zargaryan N.Yu., Nemchenko V.V. Effectiveness of fungicidal protection of spring wheat against powdery mildew and tan spot // Siberian Herald of Agricultural Science. 2023. V. 53. № 1. Р. 45‒52. https://doi.org/10.26898/0370-8799-2023-1-6
  16. Kumar J., Kumar M., Tomar A., Vaishali, Kumar P., Chand P. Morphological and molecular characterization of Trichoderma spp. from rhizosphere soil and their antagonistic activity against Fusarium spp. // Int. J. Plant Soil Sci. 2021. V. 33. Р. 100‒112.
  17. https://doi.org/10.9734/ijpss/2021/v33i1930605
  18. Lyubenova A., Rusanova М., Nikolova M., Slavov S.B. Plant extracts and Trichoderma spp.: possibilities for implementation in agriculture as biopesticides // Biotechnology and Biotechnological Equipment. 2023. V. 37. Р. 159‒166.
  19. https://doi.org/10.1080/13102818.2023.2166869
  20. Manzar N., Kashyap A.S., Goutam R.S., Rajawat M.V.S., Sharma P.K., Sharma S.K., Singh H.V. Trichoderma: Advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential // Sustainability. 2022. V. 14. Art. 12786.
  21. Pani S., Kumar A., Sharma A. Trichoderma harzianum: an overview // Bull. Environ. Pharmacol. Life Sci. 2021. V. 10. № 6. Р. 32‒39.
  22. Putranto W.A., Nugroho R.A., Hardiyanta S.P., Cahyaningrum D.Ch. Are Trichoderma atroviride and Trichoderma harzianum effective to control Fusarium associated with tomato wilt? // Microbiology Indonesia. 2021. V. 15. № 3. Р. 84‒90.
  23. https://doi.org/10.5454/mi.15.3.2
  24. Rola K., Majewska E., Chowaniec K. Interaction effect of fungicide and chitosan on non-target lichenized fungi // Chemosphere. 2023. V. 316. Р. 137772.
  25. https://doi.org/10.1016/j.chemosphere.2023.137772

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The growth rate of microorganisms on a dense nutrient medium (M ± ς): 1 ‒ Fusarium (orthoceras) oxysporum; 2 — Alternaria botrytis; 3 — Stemphylium botryosum; 4 — Phytophthora drechsleri; 5 — Trichoderma atroviride; 6 — Trichoderma harzianum.

下载 (129KB)
3. Fig. 2. Inhibition of the radial growth of the phytopathogen after 7 days of cultivation, %; (M ± ς). 1 — Fusarium (orthoceras) oxysporum; 2 — Alternaria botrytis; 3 — Stemphylium botryosum; 4 — Phytophthora drechsleri.

下载 (64KB)
4. 3. In vitro antagonism: row (a) on the right (Th) Trichoderma harzianum; row (b) on the right (Ta) Trichoderma atroviride, phytopathogens on the left (Fo) Fusarium (orthoceras) oxysporum, (Ab) Alternaria botrytis, (Sb) Stemphylium botryosum, (Pd) Phytophthora drechsleri (age cultures 7 days); row (b) (Pd) Phytophthora drechsleri and (Ta) Trichoderma atroviride. The age of crops is 14 days.

下载 (183KB)

版权所有 © Russian Academy of Sciences, 2024