PSGL-1: a universal selectin ligand or a signaling molecule?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interactions of intercellular adhesion molecules of the selectin family with glycoconjugates of cell membranes mediate the initial stage of the adhesion cascade, which recruits leukocytes, circulating in the bloodstream, to the sites of infection or damage. The formation of heterotypic cell aggregates between individual cells of hematopoietic and non-hematopoietic origin may be involved in processes, leading to inflammation, thrombosis and metastasis. A key protein, plays an important role in the binding of selectins, which serves as a ligand for all three selectins, dimeric glycoprotein, P-selectin glycoprotein ligand — PSGL-1. PSGL-1 combines signals activating various biochemical pathways during binding and rolling of leukocytes. The integration of these signals leads to activation of leukocytes, integrin-mediated arrest, restructuring of the cytoskeleton of interacting cells, polarization and subsequent diapedesis of leukocytes into surrounding tissues. The multilevel effect of PSGL-1 on cellular traffic in the physiological and inflammatory states is largely determined by posttranslational modifications, among which an important place is given to specific O- and N-glycosylation and sulfation. In this review, we discuss modifications of PSGL-1 associated with the initiation of biochemical pathways, as well as its interactions, which make it possible to classify this molecule as signaling, paying special attention to the mechanisms leading to pathology, including cardiovascular.

Full Text

Restricted Access

About the authors

N. V. Korotkova

Ryazan State Medical University

Author for correspondence.
Email: fnv8@yandex.ru
Russian Federation, Ryazan

R. E. Kalinin

Ryazan State Medical University

Email: fnv8@yandex.ru
Russian Federation, Ryazan

I. A. Suchkov

Ryazan State Medical University

Email: fnv8@yandex.ru
Russian Federation, Ryazan

N. D. Mzhavanadze

Ryazan State Medical University

Email: fnv8@yandex.ru
Russian Federation, Ryazan

L. V. Nikiforova

Ryazan State Medical University

Email: fnv8@yandex.ru
Russian Federation, Ryazan

References

  1. Varki A. (2017) Biological roles of glycans. Glycobiology. 27, 3–49. https://doi.org/10.1093/glycob/cww086
  2. Roseman S. (2001) Reflections on glycobiology. J. Biol. Chem. 276, 41527–41542. https://doi.org/10.1074/jbc.R100053200
  3. Laine R.A. (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05×10(12) structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 4, 759–767. https://doi.org/10.1093/glycob/4.6.759
  4. Alon R., Hammer D.A., Springe T.A. (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 374(6522), 539‒542. https://doi.org/10.1038/374539a0
  5. DeRogatis J.M., Viramontes K.M., Neubert E.N., Tinoco R. (2021) PSGL-1 immune checkpoint inhibition for CD4+T cell cancer immunotherapy. Front. Immunol. 12, 636238. https://doi.org/10.3389/fimmu.2021.636238
  6. Varki A. (1997) Selectin ligands: will the real ones please stand up? J. Clin. Investig. 99, 158–162. https://doi.org/10.1172/JCI119142
  7. Shao B., Yago T., Setiadi H., Wang Y., Mehta-D'souza P., Fu J., Crocker P.R., Rodgers W., Xia L., McEver R.P. (2015) O-glycans direct selectin ligands to lipid rafts on leukocytes. Proc. Natl. Acad. Sci. USA. 112(28), 8661‒8665. https://doi.org/10.1073/pnas.1507712112
  8. Martins P.C., García-Vallejo J.J., Thienen J.V., Fernandez-Borja M., Gils J.M., Beckers C., Horrevoets A.J., Hordijk P.L., Zwaginga J.J. (2007) P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler. Thromb. Vasc. Biol. 27, 1023–1029. https://doi.org/10.1161/ATVBAHA.107.140442
  9. Rivera-Nieves J., Burcin T.L., Olson T.S., Morris M.A., McDuffie M., Cominelli F., Ley K. (2006) Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J. Exp. Med. 203, 907–917. https://doi.org/10.1084/jem.20052530
  10. Patel K.D., Nollert M.U., McEver R.P. (1995) P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol. 131(6), 1893–1902. https://doi.org/10.1083/jcb.131.6.1893
  11. Afshar-Kharghan V., Diz-Kucukkaya R., Ludwig E.H., Marian A.J., Lopez J.A. (2001) Human polymorphism of P-selectin glycoprotein ligand 1 attributable to variable numbers of tandem decameric repeats in the mucinlike region. Blood. 97(10), 3306‒3307. https://doi.org/10.1182/blood.v97.10.3306
  12. Zarbock A., Muller H., Kuwano Y., Ley K. (2009) PSGL-1-dependent myeloid leukocyte activation. J. Leukoc. Biol. 86, 1119–1124. https://doi.org/10.1189/jlb.0209117
  13. Ley K. (2003) The role of selectins in inflammation and disease. Trends Mol. Med. 9, 263–268. https://doi.org/10.1016/s1471-4914(03)00071-6
  14. Serrador J.M., Urzainqui A., Alonso-Lebrero J.L., Román J.C., Montoya M.C., Vicente-Manzanares M., Yáñez-Mó M., Sánchez-Madrid F. (2002) A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes. Eur. J. Immunol. 32, 1560–1566. https://doi.org/10.1002/1521-4141(200206)32:6<1560: AID-IMMU1560>3.0.CO;2-U
  15. Sako D., Chang X.J., Barone K.M., Vachino G., White H.M., Shaw G., Veldman G.M., Bean K.M., Ahern T.J., Furie B., Cumming D.A., Larsen G.R. (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 75, 1179–1186. https://doi.org/10.1016/0092-8674(93)90327-m
  16. Sako D., Comess K.M., Barone K.M., Camphausen R.T., Cumming D.A., Shawet G.D. (1995) A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 83, 323–331. https://doi.org/10.1016/0092-8674(95)90173-6
  17. Wilkins P.P., Moore K.L., McEver R.P., Cummings R.D. (1995) Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270, 22677–22680. https://doi.org/10.1074/jbc.270.39.22677
  18. Li F., Wilkins P.P., Crawley S., Weinstein J., Cummings R.D., McEver R.P. (1996) Posttranslational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P— and E-selectin. J. Biol. Chem. 271, 3255–3264.
  19. (1995) Glycoproteins. In: New comprehensive biochemistry. Eds Montreuil J., Vliegenthart J.F.G., Schachter H. Amsterdam-New York-Oxford: Elsevier, 29, 644. ISBN 10: 0444812601 / ISBN 13: 9780444812605
  20. Sperandio M., Gleissner C.A., Ley K. (2009) Glycosylation in immune cell trafficking. Immunol. Rev. 230(1), 97–113. https://doi.org/10.1111/j.1600-065X.2009.00795.x
  21. Abadier M., Ley K. (2017) P-selectin glycoprotein ligand-1 in T cells. Curr. Opin. Hematol. 24(3), 265–273. https://doi.org/10.1097/MOH.0000000000000331
  22. Snapp K.R., Heitzig C.E., Kansas G.S. (2002) Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood. 99, 4494–4502. https://doi.org/10.1182/blood.v99.12.4494
  23. Feng J., Zhang Y., Li Q., Fang Y., Wu J. (2020) Biphasic force-regulated phosphorylation site exposure and unligation of ERM bound with PSGL-1: a novel insight into PSGL-1 signaling via steered molecular dynamics simulations. Int. J. Mol. Sci. 21(19), 7064. https://doi.org/10.3390/ijms21197064
  24. Baumann T., Affentranger S., Niggli V. (2013) Analysis of close associations of uropodassociated proteins in human T-cells using the proximity ligation assay. Peer J. 1, e186. https://doi.org/10.7717/peerj.186
  25. Urzainqui A., Serrador J.M., Viedma F., Yáñez-Mó M., Rodríguez A., Corbí A. L., Alonso-Lebrero J.L., Luque A., Deckert M., Vázquez J., Sánchez-Madrid F. (2002) ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity. 17, 401–412. https://doi.org/10.1016/s1074-7613(02)00420-x
  26. Domínguez-Luis M., Lamana A., Vazquez J., García-Navas R., Mollinedo F., Sánchez-Madrid F. (2011) The metalloprotease ADAM8 is associated with and regulates the function of the adhesion receptor PSGL-1 through ERM proteins. Mol. Immunol. 41, 3436‒3442. doi: 10.1002/eji.201141764
  27. Matsumoto M., Hirata T. (2016) Moesin regulates neutrophil rolling velocity in vivo. Cell Immunol. 304–305, 59–62. https://doi.org/10.1016/j.cellimm.2016.04.007
  28. Spertini C., Baisse B., Spertini O. (2012) Ezrin-radixin-moesin-binding sequence of PSGL-1 glycoprotein regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases. J. Biol. Chem. 287, 10693–10702. https://doi.org/10.1074/jbc.M111.318022
  29. Xu T., Liu W., Yang C., Ba X., Wang X., Yong J., Zeng X. (2015) Lipid raft-associated b-adducin is requiredfor PSGL-1-mediated neutrophil rollingon P-selectin. J. Leukocyte Biol. 97(2), 297‒306. https://doi.org/10.1189/jlb.2A0114-016R
  30. Tvaroška I., Selvaraj C., Koča J. (2020) Selectins — the two Dr. Jekyll and Mr. Hyde faces of adhesion molecules — a review. Molecules. 25(12), 2835. doi.org/10.3390/molecules25122835
  31. Goth C.K., Mehta A.Y., McQuillan A.M., Baker K.J., Hanes M.S., Park S.S. (2023) Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell. Chem. Biol. 30(8), 893‒905.e7. https://doi.org/10.1016/j.chembiol.2023.06.013
  32. Mehta-D’souza P., Klopocki A.G., Oganesyan V., Terzyan S., Mather T., Li Z., Panicker S.R., Zhu C., McEver R.P. (2017) Glycan bound to the selectin low affinity state engages Glu-88 to stabilize the high affinity state under force. J. Biol. Chem. 292, 2510–2518. https://doi.org/10.1074/jbc.M116.767186
  33. Leppänen A., White S.P., Helin J., McEver R.P., Cummings R.D. (2000) Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J. Biol. Chem. 275, 39569–39578.
  34. Woelke A.L., Kuehne C., Meyer T., Galstyan G., Dernedde J., Knapp E.W. (2013) Understanding selectincounter-receptor binding from electrostatic energy computations and experimental binding studies. J. Phys. Chem. 117(51), 16443–16454. https://doi.org/10.1021/jp4099123
  35. Sladek V., Šmak P., Tvaroška I. (2023) How E-, L-, and P-selectins bind to sLeX and PSGL-1: a quantification of critical residue interactions. J. Chem. Inf. Model. 63(17), 5604‒5618. https://doi.org/10.1021/acs.jcim.3c00704
  36. Kappelmayer J., Nagy B., Jr. (2017) The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. Review article. BioMed. Res. Int. 2017, 6138145. doi: 10.1155/2017/6138145
  37. Roldán V., González-Conejero R., Marín F., Pineda J., Vicente V., Corral J. (2004) Short alleles of P-selectin glycoprotein ligand-1 protect against premature myocardial infarction. Am. Heart J. 148(4), 602–605. https://doi.org/10.1016/j.ahj.2004.04.020
  38. Tauxe C., Xie X., Joffraud M., Martinez M., Schapira M., Spertini O. (2008) P-selectin glycoprotein ligand-1 decameric repeats regulate selectin-dependent rolling under flow conditions. J. Biol. Chem. 283(42), 28536–28545. doi: 10.1074/jbc.M802865200
  39. Timmerman I., Daniel A.E., Kroon J., Jaap D.B. (2016) Leukocytes сrossing the endothelium: a matter of communication. Int. Rev. Cell. Mol. Biol. 322, 281‒329. https://doi.org/10.1016/bs.ircmb.2015.10.005
  40. Pruenster M., Kurz A.R.M., Chung K.J., Cao-Ehlker X., Bieber S., Nussbaum C.F., Bierschenk S., Eggersmann T.K., Rohwedder I., Heinig K., Immler R., Moser M., Koedel U., Gran S., McEver R.P., Vestweber D., Verschoor A., Leanderson T., Chavakis T., Roth J., Vogl T., Sperandio M. (2015) Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat. Commun. 6, 6915. https://doi.org/10.1038/ncomms7915
  41. Wang H.B., Wang J.T., Zhang L., Geng Z.H., Xu W.L., Xu T., Huo Y., Zhu X., Plow E.F., Chen M., Geng J.G. (2007) P-selectin primes leukocyte integrin activation during inflammation. Nat. Immunol. 8(8), 882‒892. https://doi.org/10.1038/ni1491
  42. Xu Q., Shi M., Ding L., Xia Y., Luo L., Lu X., Zhang X., Deng D.Y.B. (2023) High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca2+/PAD4 pathway to exacerbate acute pancreatitis. Front. Immunol. 14, 1265344. https://doi.org/10.3389/fimmu.2023.1265344
  43. Ye Z., Guo H., Wang L., Li Y., Xu M., Zhao X., Song X., Chen Z., Huang R. (2022) GALNT4 primes monocytes adhesion and transmigration by regulating O-glycosylation of PSGL-1 in atherosclerosis. J. Mol. Cell. Cardiol. 165, 54‒63. https://doi.org/10.1016/j.yjmcc.2021.12.012
  44. Yago T., Liu Z., Ahamed J., McEver R.P. (2018) Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 132(13), 1426‒1437. https://doi.org/10.1182/blood-2018-05-850859
  45. Wu X., Liu X., Yang H., Chen Q., Zhang N., Li Y., Du X., Liu X., Jiang X., Jiang Y., Zhou Z., Yang Z. (2022) P-selectin glycoprotein ligand-1 deficiency protects against aortic aneurysm formation induced by DOCA plus salt. Cardiovasc. Drugs Ther. 36(1), 31‒44. https://doi.org/10.1007/s10557-020-07135-1
  46. Nayak L., Sweet D.R., Thomas A., Lapping S.D., Kalikasingh K., Madera A., Vinayachandran V., Padmanabhan R., Vasudevan N.T., Myers J.T., Huang A.Y., Schmaier A., Mackman N., Liao X., Maiseyeu A., Jain M.K. (2022) A targetable pathway in neutrophils mitigates both arterial and venous thrombosis. Sci. Transl. Med. 14(660), eabj7465. https://doi.org/10.1126/scitranslmed.abj7465
  47. Короткова Н.В., Калинин Р.Е., Сучков И.А., Никифорова Л.В., Рябков А.Н. (2022) Изучение содержания Р-, Е-cелектинов и гликопротеинового лиганда PSGL-1 у пациентов с атеросклерозом артерий нижних конечностей. Молекуляр. медицина. 20(2), 39–45. https://doi.org/10.29296/24999490-2022-02-06
  48. Короткова Н.В., Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., Никифоров А.А., Романов Б.К., Бодрова О.В. (2022) Оценка уровня селектинов и их лиганда PSGL-1 у пациентов с острым венозным тромбозом. Вопросы биологической, медицинской и фармацевтической химии. 25(5), 3‒9. https://doi.org/10.29296/25877313-2022-05-00
  49. Kalinin R., Suchkov I., Korotkova N., Mzhavanadze N. (2022) Adhesion molecules and their ligands in patients with varicose veins. Abstracts for the UIP XIX World Congress of Phlebology, 12–16 September 2022, Istanbul, Turkey. Article Reuse Guidelines. Phlebology: J. Venous Disease. 37(2), 3‒276. https://doi.org/10.1177/02683555221110363
  50. González-Tajuelo R., de la Fuente-Fernández M., Morales-Cano D., Muñoz-Callejas A., González-Sánchez E., Silván J., Serrador J.M., Cadenas S., Barreira B., Espartero-Santos M., Gamallo C., Vicente-Rabaneda E.F., Castañeda S., Pérez-Vizcaíno F., Cogolludo Á., Jiménez-Borreguero L.J., Urzainqui A. (2020) Spontaneous pulmonary hypertension associated with systemic sclerosis in P-selectin glycoprotein ligand 1-deficient mice. Arthritis Rheumatol. 72(3), 477‒487. https://doi.org/10.1002/art.41100
  51. Zaongo S.D., Chen Y. (2023) PSGL-1, a strategic biomarker for pathological conditions in HIV infection: a hypothesis review. Viruses. 15(11), 2197. https://doi.org/10.3390/v1511219PSGL-1
  52. Granai M., Warm V., Vogelsberg A., Milla J., Greif K., Vogel U. (2023) Impact of P-selectin-PSGL-1 axis on platelet-endothelium-leukocyte interactions in fatal COVID-19. Lab. Invest. 103(8), 100179. https://doi.org/10.1016/j.labinv.2023.100179

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences