PSGL-1: a universal selectin ligand or a signaling molecule?
- Authors: Korotkova N.V.1, Kalinin R.E.1, Suchkov I.A.1, Mzhavanadze N.D.1, Nikiforova L.V.1
-
Affiliations:
- Ryazan State Medical University
- Issue: Vol 59, No 1 (2025)
- Pages: 32-42
- Section: ОБЗОРЫ
- URL: https://edgccjournal.org/0026-8984/article/view/682228
- DOI: https://doi.org/10.31857/S0026898425010038
- EDN: https://elibrary.ru/HDFBQV
- ID: 682228
Cite item
Abstract
Interactions of intercellular adhesion molecules of the selectin family with glycoconjugates of cell membranes mediate the initial stage of the adhesion cascade, which recruits leukocytes, circulating in the bloodstream, to the sites of infection or damage. The formation of heterotypic cell aggregates between individual cells of hematopoietic and non-hematopoietic origin may be involved in processes, leading to inflammation, thrombosis and metastasis. A key protein, plays an important role in the binding of selectins, which serves as a ligand for all three selectins, dimeric glycoprotein, P-selectin glycoprotein ligand — PSGL-1. PSGL-1 combines signals activating various biochemical pathways during binding and rolling of leukocytes. The integration of these signals leads to activation of leukocytes, integrin-mediated arrest, restructuring of the cytoskeleton of interacting cells, polarization and subsequent diapedesis of leukocytes into surrounding tissues. The multilevel effect of PSGL-1 on cellular traffic in the physiological and inflammatory states is largely determined by posttranslational modifications, among which an important place is given to specific O- and N-glycosylation and sulfation. In this review, we discuss modifications of PSGL-1 associated with the initiation of biochemical pathways, as well as its interactions, which make it possible to classify this molecule as signaling, paying special attention to the mechanisms leading to pathology, including cardiovascular.
Full Text

About the authors
N. V. Korotkova
Ryazan State Medical University
Author for correspondence.
Email: fnv8@yandex.ru
Russian Federation, Ryazan
R. E. Kalinin
Ryazan State Medical University
Email: fnv8@yandex.ru
Russian Federation, Ryazan
I. A. Suchkov
Ryazan State Medical University
Email: fnv8@yandex.ru
Russian Federation, Ryazan
N. D. Mzhavanadze
Ryazan State Medical University
Email: fnv8@yandex.ru
Russian Federation, Ryazan
L. V. Nikiforova
Ryazan State Medical University
Email: fnv8@yandex.ru
Russian Federation, Ryazan
References
- Varki A. (2017) Biological roles of glycans. Glycobiology. 27, 3–49. https://doi.org/10.1093/glycob/cww086
- Roseman S. (2001) Reflections on glycobiology. J. Biol. Chem. 276, 41527–41542. https://doi.org/10.1074/jbc.R100053200
- Laine R.A. (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05×10(12) structures for a reducing hexasaccharide: the isomer barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology. 4, 759–767. https://doi.org/10.1093/glycob/4.6.759
- Alon R., Hammer D.A., Springe T.A. (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 374(6522), 539‒542. https://doi.org/10.1038/374539a0
- DeRogatis J.M., Viramontes K.M., Neubert E.N., Tinoco R. (2021) PSGL-1 immune checkpoint inhibition for CD4+T cell cancer immunotherapy. Front. Immunol. 12, 636238. https://doi.org/10.3389/fimmu.2021.636238
- Varki A. (1997) Selectin ligands: will the real ones please stand up? J. Clin. Investig. 99, 158–162. https://doi.org/10.1172/JCI119142
- Shao B., Yago T., Setiadi H., Wang Y., Mehta-D'souza P., Fu J., Crocker P.R., Rodgers W., Xia L., McEver R.P. (2015) O-glycans direct selectin ligands to lipid rafts on leukocytes. Proc. Natl. Acad. Sci. USA. 112(28), 8661‒8665. https://doi.org/10.1073/pnas.1507712112
- Martins P.C., García-Vallejo J.J., Thienen J.V., Fernandez-Borja M., Gils J.M., Beckers C., Horrevoets A.J., Hordijk P.L., Zwaginga J.J. (2007) P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler. Thromb. Vasc. Biol. 27, 1023–1029. https://doi.org/10.1161/ATVBAHA.107.140442
- Rivera-Nieves J., Burcin T.L., Olson T.S., Morris M.A., McDuffie M., Cominelli F., Ley K. (2006) Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J. Exp. Med. 203, 907–917. https://doi.org/10.1084/jem.20052530
- Patel K.D., Nollert M.U., McEver R.P. (1995) P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. J. Cell Biol. 131(6), 1893–1902. https://doi.org/10.1083/jcb.131.6.1893
- Afshar-Kharghan V., Diz-Kucukkaya R., Ludwig E.H., Marian A.J., Lopez J.A. (2001) Human polymorphism of P-selectin glycoprotein ligand 1 attributable to variable numbers of tandem decameric repeats in the mucinlike region. Blood. 97(10), 3306‒3307. https://doi.org/10.1182/blood.v97.10.3306
- Zarbock A., Muller H., Kuwano Y., Ley K. (2009) PSGL-1-dependent myeloid leukocyte activation. J. Leukoc. Biol. 86, 1119–1124. https://doi.org/10.1189/jlb.0209117
- Ley K. (2003) The role of selectins in inflammation and disease. Trends Mol. Med. 9, 263–268. https://doi.org/10.1016/s1471-4914(03)00071-6
- Serrador J.M., Urzainqui A., Alonso-Lebrero J.L., Román J.C., Montoya M.C., Vicente-Manzanares M., Yáñez-Mó M., Sánchez-Madrid F. (2002) A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes. Eur. J. Immunol. 32, 1560–1566. https://doi.org/10.1002/1521-4141(200206)32:6<1560: AID-IMMU1560>3.0.CO;2-U
- Sako D., Chang X.J., Barone K.M., Vachino G., White H.M., Shaw G., Veldman G.M., Bean K.M., Ahern T.J., Furie B., Cumming D.A., Larsen G.R. (1993) Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 75, 1179–1186. https://doi.org/10.1016/0092-8674(93)90327-m
- Sako D., Comess K.M., Barone K.M., Camphausen R.T., Cumming D.A., Shawet G.D. (1995) A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 83, 323–331. https://doi.org/10.1016/0092-8674(95)90173-6
- Wilkins P.P., Moore K.L., McEver R.P., Cummings R.D. (1995) Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J. Biol. Chem. 270, 22677–22680. https://doi.org/10.1074/jbc.270.39.22677
- Li F., Wilkins P.P., Crawley S., Weinstein J., Cummings R.D., McEver R.P. (1996) Posttranslational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P— and E-selectin. J. Biol. Chem. 271, 3255–3264.
- (1995) Glycoproteins. In: New comprehensive biochemistry. Eds Montreuil J., Vliegenthart J.F.G., Schachter H. Amsterdam-New York-Oxford: Elsevier, 29, 644. ISBN 10: 0444812601 / ISBN 13: 9780444812605
- Sperandio M., Gleissner C.A., Ley K. (2009) Glycosylation in immune cell trafficking. Immunol. Rev. 230(1), 97–113. https://doi.org/10.1111/j.1600-065X.2009.00795.x
- Abadier M., Ley K. (2017) P-selectin glycoprotein ligand-1 in T cells. Curr. Opin. Hematol. 24(3), 265–273. https://doi.org/10.1097/MOH.0000000000000331
- Snapp K.R., Heitzig C.E., Kansas G.S. (2002) Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood. 99, 4494–4502. https://doi.org/10.1182/blood.v99.12.4494
- Feng J., Zhang Y., Li Q., Fang Y., Wu J. (2020) Biphasic force-regulated phosphorylation site exposure and unligation of ERM bound with PSGL-1: a novel insight into PSGL-1 signaling via steered molecular dynamics simulations. Int. J. Mol. Sci. 21(19), 7064. https://doi.org/10.3390/ijms21197064
- Baumann T., Affentranger S., Niggli V. (2013) Analysis of close associations of uropodassociated proteins in human T-cells using the proximity ligation assay. Peer J. 1, e186. https://doi.org/10.7717/peerj.186
- Urzainqui A., Serrador J.M., Viedma F., Yáñez-Mó M., Rodríguez A., Corbí A. L., Alonso-Lebrero J.L., Luque A., Deckert M., Vázquez J., Sánchez-Madrid F. (2002) ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity. 17, 401–412. https://doi.org/10.1016/s1074-7613(02)00420-x
- Domínguez-Luis M., Lamana A., Vazquez J., García-Navas R., Mollinedo F., Sánchez-Madrid F. (2011) The metalloprotease ADAM8 is associated with and regulates the function of the adhesion receptor PSGL-1 through ERM proteins. Mol. Immunol. 41, 3436‒3442. doi: 10.1002/eji.201141764
- Matsumoto M., Hirata T. (2016) Moesin regulates neutrophil rolling velocity in vivo. Cell Immunol. 304–305, 59–62. https://doi.org/10.1016/j.cellimm.2016.04.007
- Spertini C., Baisse B., Spertini O. (2012) Ezrin-radixin-moesin-binding sequence of PSGL-1 glycoprotein regulates leukocyte rolling on selectins and activation of extracellular signal-regulated kinases. J. Biol. Chem. 287, 10693–10702. https://doi.org/10.1074/jbc.M111.318022
- Xu T., Liu W., Yang C., Ba X., Wang X., Yong J., Zeng X. (2015) Lipid raft-associated b-adducin is requiredfor PSGL-1-mediated neutrophil rollingon P-selectin. J. Leukocyte Biol. 97(2), 297‒306. https://doi.org/10.1189/jlb.2A0114-016R
- Tvaroška I., Selvaraj C., Koča J. (2020) Selectins — the two Dr. Jekyll and Mr. Hyde faces of adhesion molecules — a review. Molecules. 25(12), 2835. doi.org/10.3390/molecules25122835
- Goth C.K., Mehta A.Y., McQuillan A.M., Baker K.J., Hanes M.S., Park S.S. (2023) Chemokine binding to PSGL-1 is controlled by O-glycosylation and tyrosine sulfation. Cell. Chem. Biol. 30(8), 893‒905.e7. https://doi.org/10.1016/j.chembiol.2023.06.013
- Mehta-D’souza P., Klopocki A.G., Oganesyan V., Terzyan S., Mather T., Li Z., Panicker S.R., Zhu C., McEver R.P. (2017) Glycan bound to the selectin low affinity state engages Glu-88 to stabilize the high affinity state under force. J. Biol. Chem. 292, 2510–2518. https://doi.org/10.1074/jbc.M116.767186
- Leppänen A., White S.P., Helin J., McEver R.P., Cummings R.D. (2000) Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J. Biol. Chem. 275, 39569–39578.
- Woelke A.L., Kuehne C., Meyer T., Galstyan G., Dernedde J., Knapp E.W. (2013) Understanding selectincounter-receptor binding from electrostatic energy computations and experimental binding studies. J. Phys. Chem. 117(51), 16443–16454. https://doi.org/10.1021/jp4099123
- Sladek V., Šmak P., Tvaroška I. (2023) How E-, L-, and P-selectins bind to sLeX and PSGL-1: a quantification of critical residue interactions. J. Chem. Inf. Model. 63(17), 5604‒5618. https://doi.org/10.1021/acs.jcim.3c00704
- Kappelmayer J., Nagy B., Jr. (2017) The interaction of selectins and PSGL-1 as a key component in thrombus formation and cancer progression. Review article. BioMed. Res. Int. 2017, 6138145. doi: 10.1155/2017/6138145
- Roldán V., González-Conejero R., Marín F., Pineda J., Vicente V., Corral J. (2004) Short alleles of P-selectin glycoprotein ligand-1 protect against premature myocardial infarction. Am. Heart J. 148(4), 602–605. https://doi.org/10.1016/j.ahj.2004.04.020
- Tauxe C., Xie X., Joffraud M., Martinez M., Schapira M., Spertini O. (2008) P-selectin glycoprotein ligand-1 decameric repeats regulate selectin-dependent rolling under flow conditions. J. Biol. Chem. 283(42), 28536–28545. doi: 10.1074/jbc.M802865200
- Timmerman I., Daniel A.E., Kroon J., Jaap D.B. (2016) Leukocytes сrossing the endothelium: a matter of communication. Int. Rev. Cell. Mol. Biol. 322, 281‒329. https://doi.org/10.1016/bs.ircmb.2015.10.005
- Pruenster M., Kurz A.R.M., Chung K.J., Cao-Ehlker X., Bieber S., Nussbaum C.F., Bierschenk S., Eggersmann T.K., Rohwedder I., Heinig K., Immler R., Moser M., Koedel U., Gran S., McEver R.P., Vestweber D., Verschoor A., Leanderson T., Chavakis T., Roth J., Vogl T., Sperandio M. (2015) Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat. Commun. 6, 6915. https://doi.org/10.1038/ncomms7915
- Wang H.B., Wang J.T., Zhang L., Geng Z.H., Xu W.L., Xu T., Huo Y., Zhu X., Plow E.F., Chen M., Geng J.G. (2007) P-selectin primes leukocyte integrin activation during inflammation. Nat. Immunol. 8(8), 882‒892. https://doi.org/10.1038/ni1491
- Xu Q., Shi M., Ding L., Xia Y., Luo L., Lu X., Zhang X., Deng D.Y.B. (2023) High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca2+/PAD4 pathway to exacerbate acute pancreatitis. Front. Immunol. 14, 1265344. https://doi.org/10.3389/fimmu.2023.1265344
- Ye Z., Guo H., Wang L., Li Y., Xu M., Zhao X., Song X., Chen Z., Huang R. (2022) GALNT4 primes monocytes adhesion and transmigration by regulating O-glycosylation of PSGL-1 in atherosclerosis. J. Mol. Cell. Cardiol. 165, 54‒63. https://doi.org/10.1016/j.yjmcc.2021.12.012
- Yago T., Liu Z., Ahamed J., McEver R.P. (2018) Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood. 132(13), 1426‒1437. https://doi.org/10.1182/blood-2018-05-850859
- Wu X., Liu X., Yang H., Chen Q., Zhang N., Li Y., Du X., Liu X., Jiang X., Jiang Y., Zhou Z., Yang Z. (2022) P-selectin glycoprotein ligand-1 deficiency protects against aortic aneurysm formation induced by DOCA plus salt. Cardiovasc. Drugs Ther. 36(1), 31‒44. https://doi.org/10.1007/s10557-020-07135-1
- Nayak L., Sweet D.R., Thomas A., Lapping S.D., Kalikasingh K., Madera A., Vinayachandran V., Padmanabhan R., Vasudevan N.T., Myers J.T., Huang A.Y., Schmaier A., Mackman N., Liao X., Maiseyeu A., Jain M.K. (2022) A targetable pathway in neutrophils mitigates both arterial and venous thrombosis. Sci. Transl. Med. 14(660), eabj7465. https://doi.org/10.1126/scitranslmed.abj7465
- Короткова Н.В., Калинин Р.Е., Сучков И.А., Никифорова Л.В., Рябков А.Н. (2022) Изучение содержания Р-, Е-cелектинов и гликопротеинового лиганда PSGL-1 у пациентов с атеросклерозом артерий нижних конечностей. Молекуляр. медицина. 20(2), 39–45. https://doi.org/10.29296/24999490-2022-02-06
- Короткова Н.В., Калинин Р.Е., Сучков И.А., Мжаванадзе Н.Д., Никифоров А.А., Романов Б.К., Бодрова О.В. (2022) Оценка уровня селектинов и их лиганда PSGL-1 у пациентов с острым венозным тромбозом. Вопросы биологической, медицинской и фармацевтической химии. 25(5), 3‒9. https://doi.org/10.29296/25877313-2022-05-00
- Kalinin R., Suchkov I., Korotkova N., Mzhavanadze N. (2022) Adhesion molecules and their ligands in patients with varicose veins. Abstracts for the UIP XIX World Congress of Phlebology, 12–16 September 2022, Istanbul, Turkey. Article Reuse Guidelines. Phlebology: J. Venous Disease. 37(2), 3‒276. https://doi.org/10.1177/02683555221110363
- González-Tajuelo R., de la Fuente-Fernández M., Morales-Cano D., Muñoz-Callejas A., González-Sánchez E., Silván J., Serrador J.M., Cadenas S., Barreira B., Espartero-Santos M., Gamallo C., Vicente-Rabaneda E.F., Castañeda S., Pérez-Vizcaíno F., Cogolludo Á., Jiménez-Borreguero L.J., Urzainqui A. (2020) Spontaneous pulmonary hypertension associated with systemic sclerosis in P-selectin glycoprotein ligand 1-deficient mice. Arthritis Rheumatol. 72(3), 477‒487. https://doi.org/10.1002/art.41100
- Zaongo S.D., Chen Y. (2023) PSGL-1, a strategic biomarker for pathological conditions in HIV infection: a hypothesis review. Viruses. 15(11), 2197. https://doi.org/10.3390/v1511219PSGL-1
- Granai M., Warm V., Vogelsberg A., Milla J., Greif K., Vogel U. (2023) Impact of P-selectin-PSGL-1 axis on platelet-endothelium-leukocyte interactions in fatal COVID-19. Lab. Invest. 103(8), 100179. https://doi.org/10.1016/j.labinv.2023.100179
Supplementary files
